

Deccan Education Society's Fergusson College (Autonomous) Pune - 411004

Curriculum

as per guidelines of

NEP-2020

for

M.Sc. - I

Industrial Mathematics with Computer Applications (IMCA)

With effect from Academic Year 2023-2024

Deccan Education Society's Fergusson College (Autonomous), Pune Program Outcomes (POs)

PO1	Disciplinary Knowledge:
	Demonstrate comprehensive knowledge of the discipline that forms a part of a
	postgraduate programme. Execute strong theoretical and practical understanding
	generated from the specific programme in the area of work.
PO2	Critical Thinking and Problem solving:
	Exhibit the skill of critical thinking and understand scientific texts and place scientific
	statements and themes in contexts and also evaluate them in terms of generic
	conventions. Identify the problem by observing the situation closely, take actions and
	apply lateral thinking and analytical skills to design the solutions.
PO3	Social competence:
	Exhibit thoughts and ideas effectively in writing and orally; communicate with others
	using appropriate media, build effective interactive and presenting skills to meet global
	competencies. Elicit views of others, present complex information in a clear and concise
D 04	way and help reach conclusions in group settings.
PO4	Research-related skills and Scientific temper:
	Infer scientific literature, build a sense of enquiry and able to formulate, test, analyse,
	interpret, and establish hypothesis and research questions; and to identify and consult
	relevant sources to find answers. Plan and write a research paper/project while
	emphasizing on academics and research ethics, scientific conduct and creating
	awareness about intellectual property rights and issues of plagiarism.
PO5	Trans-disciplinary knowledge:
	Create new conceptual, theoretical and methodological understanding that integrates and
	transcends beyond discipline-specific approaches to address a common problem.
PO6	Personal and professional competence:
	Perform independently and also collaboratively as a part of a team to meet defined
	objectives and carry out work across interdisciplinary fields. Execute interpersonal
	relationships, self-motivation and adaptability skills and commit to professional ethics.
PO7	Effective Citizenship and Ethics:
	Demonstrate empathetic social concern and equity centred national development, and
	ability to act with an informed awareness of moral and ethical issues and commit to
	professional ethics and responsibility.
PO8	Environment and Sustainability:
	Understand the impact of the scientific solutions in societal and environmental contexts
	and demonstrate the knowledge of and need for sustainable development.
PO9	Self-directed and Life-long learning:
	Acquire the ability to engage in independent and life-long learning in the broadest
	context of socio-technological changes.

PSO	Program Specific Outcomes (PSOs)
No.	Upon completion of this Programme the student will be able to
PSO1	Academic competence
	(i) Understand basic facts about Mathematics -annotations, terminology, geometrical figures, graphical displays, and its major subfields
	 (Analysis, Algebra, Applied Mathematics and Statistics). (ii) Design and develop computer programs/computer-based systems in the areas related to algorithms, networking, web design, cloud computing, IoT and data analytics.
	(iii) Demonstrate unifying structures of Mathematics and the basic constructs of several programming languages and their application areas.
PSO2	Personal and Professional Competence
	(i) Apply mathematical solutions in a variety of contexts related to science, technology, business and industry, and carry out hands-on activities on
	several programming technologies as well as academic projects.
	(ii) Analyze the data by selecting and using appropriate mathematical formulae or techniques/programming technology stack in order to draw the relevant conclusion.
	 (iii) Execute the problem-solving skills, equip with Mathematical modelling abilities and develop competent professionals who will be able to address challenges in the field of IT at global level.
PSO3	Research Competence
	 Apply advanced knowledge on topics in pure Mathematics and impart analytical skills to develop initiatives and come up with innovative ideas for R & Din various fields.
	(ii) Integrate the knowledge of Computer Science and Mathematics to solve and authenticate real-time data from various fields.
PSO4	Entrepreneurial and Social competence
	 (i) Develop analytical skills required to get distinguishing employment opportunities in several fields including IT, Research and Development, teaching field and gain understanding about the ethical issues related to protection of intellectual property - copyrights, trademarks and patents. (ii) Execute social competence including communication and effective interaction with others, listening, speaking, observational skills and presenting skills.

Semester	Paper CodePaper Title			
Ι	MTS-501	Mathematical Analysis	4	
	MTS-502	Applied Linear Algebra	4	
	MTS-503 OR	Theoretical Computer Science	4	
	MTS-504	Mathematical Foundations of Computer Science		
	MTS-510	Research Methodology	4	
	MTS-520	Practical I	2	
	MTS-521	Practical II	2	
		Total Semester Credits	20	
II	MTS-551	Abstract Algebra	4	
	MTS-552	Probability & Statistics	4	
	MTS-553 OR	Graph Theory and its Applications	4	
	MTS-554	Numerical Analysis		
	MTS-560	OJT/FP	4	
	MTS-570	Practical III	2	
	MTS-571	Practical IV	2	
		Total Semester Credits	20	
		Total PG-I Credits	40	

Programme Structure

Teaching and Evaluation (Only for FORMAL education courses)

Course	No. of Hours per	No. of Hours per	Maximum	CE	ESE
Credits	Semester	Week	Marks	40 %	60%
	Theory/Practical	Theory/Practical			
1	15 / 30	1 / 2	25	10	15
2	30 / 60	2 / 4	50	20	30
3	45 / 90	3/6	75	30	45
4	60 / 120	4 / 8	100	40	60

Eligibility: As per the rules and regulations of Savitribai Phule Pune University (SPPU)

SEMESTER I

Title of the		MTS-501 Mathematical Analysis	Number of		
Course and			Credits: 04		
Course Co	ode				
		Course Outcomes (COs)			
		On completion of the course, the students will be able to:			
CO1	Retri	Retrieve basic concepts in Metric Topology			
CO2	Interpret properties of Continuous and Differentiable functions				
CO3	Implement Mean Value theorems to real applications and discuss its use				
CO4	CO4 Identify series expansions of general continuously differentiable functions for computational needs				
CO5	Evaluate Riemann Integrals and identify its applications				
CO6	Formulate the theory of sequences and series of functions to use it in several applications				

Unit No	Title of the Unit and Contents	
1	Basic Topology	
	Finite, Countable & Uncountable sets, Metric Spaces, Compact Sets, Perfect Sets	
	Connected Sets	
2	Numerical Sequences and Series	
	Convergent sequences, sub sequences, Cauchy sequences, Special sequences, Series,	
	Series of non-negative terms, The number e, Root and Ratio tests, Power series,	
	Absolute Convergence	
3	Continuity	
	Limits of functions, Continuous functions, Continuity and Connectedness,	
	Continuity and Compactness, Monotonic functions, Types of discontinuities	
4	Differentiation	
	Derivatives and Mean Value Theorems, Taylors theorem, convex functions, Cauchy	
	form of Remainder, Differentiation of Vector Valued functions	
5	Riemann Integral	
	Concept of Partitions, Refinements, Upper and lower sums, Existence of Integral,	
	Properties of Riemann Integral (without proof), Integral and Differentiation,	
	Fundamental Theorem of Integral Calculus	
6	Uniform Convergence	
	Concept of uniform convergence, Uniform convergence and continuity, Uniform	
	convergence and integration, uniform convergence and differentiation, Example of a	
	continuous nowhere differentiable function, Equicontinuous family, Stone	
	Weierstrass Theorem (Statement only)	

Learning Resources:

- 1) Walter Rudin, Principles of Mathematical Analysis, McGrawhill India (3rd Edition);
- 2) Ajit Kumar and S. Kumerasan, A First Course on Real Analysis, CRC Press.
- 3) J. E. Marsden and M. J. Hoffman, Elementary Classical Analysis, 2nd Edition, W. H. Freeman;

Cour	of the se and		Number of Credits: 04		
Cours	se Code				
		Course Outcomes (COs)			
<u>CO1</u>	Decor	On completion of the course, the students will be able to:			
CO1 CO2		be the key concepts associated with vector spaces ate mathematical properties of inner products and solve examples to justify	the properties		
			the properties		
CO3		Gram-Schmidt process to find an orthogonal basis to use it in applications			
CO4		fy the role of Eigenvalue and Eigenvectors in Matrix Decompositions			
CO5		mine the concept of Linear Transforms to solve real life problems	· · ·		
CO6		alate the concept of Matrix Decompositions to discuss the problems in En	ngineering and		
	Data	Science			
Unit N	lo.	Title of the Unit and Contents			
1	V	ector Spaces			
		eal Vector Spaces, Subspaces, Span , Linear Independence, Basis and			
		undamental Matrix Subspaces, Kernel, Image, Cokernel, Coimage,	Fundamental		
		heorem of Linear Algebra relating to these subspaces			
2		ner products, Norms and Orthogonality	1 0 1		
		ner products, Inner products on function spaces, Triangle and Cauc			
		equality, Norms, Matrix norms, Positive Definite Matrices, Gram Matric actorization, Orthonormal Basis, Gram Schmidt Process, QR Factorization			
		Projections, Orthogonality of Fundamental Matrix subspaces, Orthogonal Polynomials			
3		inearity			
		near Operators, Space of Linear Functions, Dual Spaces, Composition an	d Inverses of		
	L	near Transforms, Change of Basis, Affine Transforms, Isometry, Adjoints,	Self-Adjoint		
	0	perators, Positive definite Linear functions and Minimization			
4		igenvalues & Eigenvectors			
		troduction, Gerschgorin Circle theorem, Eigenbases, Diagonalizatio			
		ubspaces, Eigenvalues of Symmetric Matrices, Spectral Theorem (Stat			
		ordan Canonical form, Singular Value Decomposition, Matrix Psuedo Inve	rse, Principal		
5		omponent Analysis pplications			
5		pplications of Eigenvalues and Eigenvectors to discrete dynamical system	ems. Markov		
		hains, Minimization of Quadratic functions, Closest points, Least Squa			
		purier Transform and Fast Fourier Transform Algorithm, Matrix Exponent			
		pplications to Geometry.			
Learn		esources:			
1)		Olver, Chehrzad Shakiban, Applied Linear Algebra, Springer (2 nd Edition)			
2)		rt Strang, Linear Algebra and its applications (4 th Edition)			
3)		Lay, Linear Algebra with Applications, Pearson Edition			
4) 5)		eth Hoffman and Ray Kunze, Linear Algebra, PHI India Private Limited			
5) 6)		Artin, Algebra, PHI India Private Limited Hamilton, Linear Algebra, Cambridge University Press			
0) 7)		r Algebra and Learning from Data, Cambridge Press			
8)		er Rudin, Principles of Mathematical Analysis, McGraw Hill India (3 rd Editi	ion)		
9)		Kumar and S. Kumerasan, A First Course on Real Analysis, CRC Press.)		
10)					

J. E. Marsden and M. J. Hoffman, Elementary Classical Analysis, 2nd Edition, W. H. Freeman

Title of the	MTS-503 Theoretical Computer Science	Number of
Course and		Credits: 4
Course Code		
	Course Outcomes (COs)	
	On completion of the course, the students will be able to:	
CO1	Define basic concepts of automata theory and describe va	rious forms of
	grammar to know functioning, capabilities and limitations of c	omputers.
CO2	Explain and construct finite state systems and Context Free G	rammar for the
	given language. Construct regular expressions to recognize	e patterns and
	PDA	-
CO3	Apply various techniques and algorithms to transform com	puting mod and
	grammar.	
CO4	Analyze and simplify CFG, classify various grammars acc	cording to the
	Chomsky hierarchy.	
CO5	Evaluate various classes of problems, grammar, languages,	and language
	recognizer machines.	
CO6	Integrate the concepts of finite automata, regular expression a	nd context free
	grammar in order to generate regular expression for regul	ar languages to
	recognize patterns.	

Unit. No.	Title of Unit and Contents				
Ι	Overview of theory of mathematics:				
	Sets, Functions, Logical statements, Proofs, relations, languages, Mathematical				
	induction, strong principle, Recursive definitions				
II	Introduction to Theory of Computations:				
	Fundamental concepts, history, Applications, Phases of Compiler, basic				
	terminologies used in theory of computation: automata, symbol, alphabet, String				
II	Introduction to Regular Languages and Finite Automata:				
	Regular expressions, regular				
	languages, applications, Automata with Output-Moore machine, Mealy				
	machine, Finite automata, memory requirement in a recognizer,				
	definition, union, intersection and complement of regular language, Non				
	Determinism Finite Automata, Conversion from NFA to FA, Non				
	Determinism Finite Automata Conversion of NFA to NFA and				
	equivalence of three Kleene's Theorem, Minimization of Finite				
	automata Regular and Non-Regular Languages - pumping lemma.				
III	Grammar: Introduction to Grammar, Definition, elements of grammar,				
	Application areas and comparison of different grammars, Comparison				
IV	Context Free Grammar: Importance of Context free grammar, Unions				
	Concatenations and Kleen's of Context free language Regular grammar,				
	Derivations and Languages, Relationship between derivation and derivation				
	trees, Ambiguity Unambiguous CFG and Algebraic Expressions Bacos Naur				
	Form (BNF), Normal Form - CNF				

V	Pushdown Automata, CFL and NCFL: Pushdown Automata, CFL And NCFL: Definition, deterministic PDA, Equivalence of CFG and PDA, Pumping lemma for CFL, Intersections and Complements of CFL, Non-CFL
VI	Turing Machine (TM): TM Definition, Model of Computation and Church Turning Thesis, computing functions with TM, Combining TM, Variations of TM, Non-Deterministic TM, Universal TM, Recursively and Enumerable Languages, Context sensitive languages and Chomsky hierarchy
VII	Computable Functions : Partial, total, constant functions, Primitive Recursive Functions, Bounded Mineralization, Regular function, Recursive Functions

Learning References:

- 1. John Hopcroft, Rajeev Motwani and Jeffrey Ullman, "Introduction to Automata theory, Languages and computation", 3rd edition Pearson Education, 2009.
- 2. Shirish S. Sane, "Theory of Computer Science", 2nd edition, 2007, Technical publication
- 3. Daniel I. A. Cohen, John Wiley & Sons, "Introduction to Computer Theory", 2nd edition, 2009
- 4. John E. Hopcroft and Jeffrey Ullman, "Introduction to Automata theory, Languages and computation" Narosa Publishing House, 1979.

Title of the		MTS-504 Mathematical Foundations of Computer Science	Number of		
Course and			Credits: 04		
Course Code					
	Course Outcomes (COs)				
		On completion of the course, the students will be able to:			
CO1	State basic concepts in Counting and solve examples				
CO2	Discuss the concepts of Generating functions				
CO3	3 Apply the concepts of Recurrence relations to model problems in Computer Science				
CO4 Analyze the concept of Inclusion Exclusion to count favorable union of events					
CO5	Determine the Pigeons and Holes to apply the pigeon hole principle				
CO6	Create a set of Boolean identities to model applications in Computer Science				

Unit No.	Title of the Unit and Contents		
1	General Counting for Arrangements and Selections		
	Two basic counting principles, Simple Arrangements and Selections, Arrangements		
	and selections with repetitions, Distributions, Binomial Identities		
2	Generating functions		
	Generating function mod, Calculating coefficients with generating functions, Partitions, Exponential Generating functions.		
3	Recurrence Relations		
	Recurrence Relation modulus, Divide and Conquer relations, Solution to Linear		
	Recurrences, Solution to Inhomogeneous Recurrence relations, Solutions with		
	Generating Functions.		
4	4 Inclusion Exclusion Principle		
	Counting with Venn Diagrams, Inclusion Exclusion Formula, Restricted Positions and		
	Rook Polynomials		
5	Pigeonhole Principle		
	Pigeonhole principle and its related problems		
6	Lattice Theory / Boolean Algebra		
	Poset, Hasse Diagram, Lattices, Complemented Lattices, Bounded and Distributive		
	Lattices, Introduction to Boolean variable, Boolean functions of degree n, Boolean		
	identities, Definition of Boolean Algebra, Representation of Boolean Functions,		
	Minterm Maxterm Disjunctive Normal form, Conjunctive Normal Form, Applications		
	to Computer Science and some practical applications		

- 1) Alan Tucker, Applied Combinatorics, John Wiley & Sons
- 2) Course Notes for MATH 239, Introduction to Combinatorics, University of Waterloo
- 3) Chaun Chong Chen, Khee Meng, Koh, Principles and Techniques in Combinatorics,
- 4) Vijay K Garg, Introduction to Lattice Theory with Computer Science Applications, Wiley Publications

Title of the	MTS-510 Research Methodology	Number of
Course and		Credits: 4
Course Code		
	Course Outcomes (COs)	
	On completion of the course, the students will be able to:	
CO1	Define basic concepts of Research	
CO2	Explain significance of statistical analysis, Exploratory and confirmatory research along with various case studies.	
CO3	Applying various statistical methods and software to solve the case studies in various subjects.	
CO4	Analyzing data by collecting it using various methods such as	questionnaires.
CO5	Evaluate various classes of problems, grammar, languages, recognizer machines.	and language
CO6	Writing research paper / thesis / presentation / research propos	al.

Unit	Title of the Unit and Contents
No.	
1	Introduction to Research Methodology: History of research. Indian, Egyptian,
	Greek ideas methodologies and research in agriculture, chemistry, metallurgy,
	medical. Ancient Indian research methodology applications.
2	Overview of Research Types and Statistical Techniques: Statistical analysis and its
	significance, Exploratory and confirmatory research, Planned and ad-hoc methods of
	data collection, Non-response and methods of recovering the missing response,
	Various softwares for statistical analysis. The module will consist of case studies of
	the research performed in various subjects using statistical methods, Error and noise
	analysis, curve fitting
3	Data Collection and Research Topic: Creating questionnaire. Data analysis from
	answers, Selection of research topic (case study based). Selection of research topic
	(case study based)
4	Identification of Research Problem: Literature search, selection of research topic
	(case study based), maintaining laboratory records (case study based). Safety in
	Laboratories, Ethical considerations, effective verbal and nonverbal communication,
	field data collection, safety in field.
5	Interpretation and Report Writing: Writing research paper and/or thesis, making a
	presentation, writing a research proposal, and patents in Science, technology.
6	Thesis Writing, Presentation and Visualization Tools: Latex, Beamer, Introduction
	to Minitab.

Learning References:

- 1) 'History of the Scientific Methods' by Martin Shuttleworth, <u>https://explorable.com/history</u> of-the- scientific-method.
- 2) 'The Statistical Analysis of Experimental Data' by, John Mandel, ISBN: 0486646661

Title of the	MTS-520 (Practical I) Programming Language I	Number of
Course and		Credits: 02
Course Code		
	Course Outcomes (COs)	
	On completion of the course, the students will be able to:	
CO1	Recall the basic concepts of the C programming language.	
CO2	Discuss basic concepts of computers, algorithms and algorithmic thinking.	
CO3	Apply stack for implementation of function calls and parar mechanisms.	neter passing
CO4	Analyze and compare usage of arrays, strings, structures and file	es.
CO5	Determine the solution for a given problem by distinguish	hing various
	memory allocation methods.	
CO6	Write C programs to validate the specifications.	

Unit	Title of Unit and Contents			
No.				
1	Introduction to Programming			
	Program and Programming, Programming Languages, Types of Software, Operating			
	Systems, Basic Linux Commands and vi Editor, Compiler, Interpreter, Loader and			
	Linker			
	Introduction to algorithms, flow charts, Background of internal working of compilers.			
2	Basics of C			
	History and Features of C, Importance of C, Backslash Characters, Character set,			
	Constants, Format Specifiers, Identifiers, Keywords, Variables, Data Types,			
	Comments, const Qualifier, The Structure of a C Program, Building an Executable			
	Version of a C Program, Debugging a C Program, Programming Examples			
3	Applications of C Programming			
	Demonstration of an application developed using C			
	Note: This unit will not be considered for an assessment of students			
4	Control Statements			
	Decision Making Statements: if, if-else, switch Loop Control Structures: while, do.			
	while, for			
	Keywords- break and continue, exit () Function, return Statement, Programming			
	Examples			
5	Operators and Expressions			
	Arithmetic Operators, Increment and Decrement Operators, Relational Operators,			
	Logical Operators, Bitwise Operators, Assignment Operators, Conditional Operator,			
	size of Operator, Comma Operator, Type Casting Operator, Other Operators,			
	Precedence and Order of Evaluation,			
	Programming Examples			
6	Input and Output			
	Unformatted I/O, Character I/O, String I/O, Formatted I/O, Programming Examples			
7	Functions			
	Concept, Usage of a Function, Advantages, Function Prototype, Function example,			
	Types of Function, Call by Value and Call by Address, Recursion, Library Functions,			
	Local variable, Global Variable, Storage classes (automatic, static, register, external),			
	Programming Examples			

8	Array				
	Array Declaration, Initialization, Types of Arrays (1-D, 2-D and				
	Multidimensional), Passing Arrays to Functions, Programming Examples				
9	Pointers				
	Pointer Declaration and Initialization, Dereferencing Pointers, void Pointer, Pointer				
	Arithmetic, Pointer to Pointer, Arrays and Pointers, Functions and Pointers, Passing				
	Pointers to Function, Function Returning Pointer, Pointer to Function, Dynamic				
	Memory Allocation, Programming Examples				
10	String Handling				
	Declaration and Initialization, Reading and Writing Strings, Standard StringLibrary				
	Functions, Array of Pointers to String, Command Line Arguments, Programming				
	Examples				
11	Structures and Unions				
	Overview of Structures, Defining and Using a Structure, typedef Keyword,				
	Nested Structures, Passing Structure to Function, Structure and Pointer, Union,				
	Difference between Structure and Union, Programming Examples				
12	Pre-Processor Directives				
	Pre-Processor Directives, #define Macro, Conditional Compilation, Pre- defined				
	Macros, #include and Header Files, Programming Examples				
13	File Handling				
	What is a Stream? Opening and Closing of Files, File Opening Modes, Writing and				
	Reading in Text Format, Writing and Reading in Binary Format, Programming				
	Examples				

Include Reference Books / e-resources / journals /any other learning material

- 1. Kernighan Brian W., Ritchie Dennis M., The C Programming Language, PHILearning Pvt. Ltd., 2nd Edition, 2010
- Schildt Herbert, C: The Complete Reference, Tata McGraw Hill, 4th Edition, 2006
- 3. Kanetkar Yashavant, Pointers in C, BPB Publications, 4th Edition, 2013
- 4. Kanetkar Yashavant, Test your C Skills, BPB Publications, Rev. Edition, 2008

Title of the	MTS-521 (Practical II) Understanding of Data and Databases	Number of	
Course and		Credits: 02	
Course	Code		
Code	Course Outcome (COs)		
	On completion of the course, the students will be able to:		
CO1	Describe and discuss the fundamentals of data, major components of I	Databases	
CO2	Interpret a problem and recognize the computing requirements appro	priate to its solution	
CO3	Implement appropriate database for computer-based systems acc requirements, appropriate syntax to write SQL commands to perfor operations and NoSQL operations	rm various RDBMS	
CO4	Analyze a problem to find out the computing requirements appropr	iate to its solution.	
CO5	Discuss the purpose of query processing for optimized solution.		
CO6	Design data requirements of an application with the help of cotools.	onceptual modelling	
Unit No.	Title of Unit and Contents		
T	Introduction to data and databases		
Ι	Data – Introduction / Concept, introduction to data structures,		
	Introduction to databases, Significance of Database, System A	nulications Data	
	Independence, Entities and their Attributes, Relationship and Relation		
	E-R Diagram, Data types, Creating tables (without keys)	sinp rypes,	
2	Overview of RDBMS (PostgreSQL)		
_	Relational Database Management System, RDBMS Properties, Mai	ntaining Integrity	
	and Defining Data Integrity, Integrity Rules and Integrity Const	<u> </u>	
	Integrity Rules, Creating tables (with keys)		
3	SQL		
	Types of SQL, DDL, DML, Basic queries in SQL Single table, Deletion-Insertion and Update in SQL, Simple queries (with insert, delete, and update), Multi table Retrievals, Nested queries (with foreign key and using multi tables), Aggregate-Functions, Joins, GROUPBY - HAVING clause, Nested Sub queries		
4	Views and Stored Functions		
	View definition, how to write view and its execution, Function defini	tion, how to write	
	function and its execution, Solving some problems with function	· · · · · · · · · · · · · · · · · · ·	
5	Cursors		
	Cursor definition, how to write cursor and its execution, Solving sor	ne problems with	
	cursor, Introduction to triggers and some demo examples	•	
6	NoSQL		
	Introduction, Why NoSQL? RDBMS Vs NoSQL, Features of NoSQL	, Types:	
	Key-value Pair Based, Column-oriented, Graphs based, Document-or	iented, ACID and	
	BASE for reliable database transactions, CAP theorem		
7	Introduction to MongoDB		
	Basics, Installation and Set Up, CRUD operations		
8	Working with online database (Demonstration)		

Practical Lab II: Understanding of Data and Databases

- 1. Henry F. Korth, Abraham Silberschatz, S. Sudarshan Database System Concepts, ISBN:9780071289597, Tata McGraw-Hill Education
- 2. Korry Douglas, PostgreSQL, ISBN:9780672327568
- 3. John Worsley, Joshua Drake Practical PostgreSQL (B/CD), ISBN: 9788173663925Shroff / O'reilly
- 4. Joshua D. Drake, John C Worsley Practical Postgresql, O'Reilly
- 5. Richard Stones, Neil Matthew Beginning Databases with PostgreSQL, From Noviceto Professional, 2nd Edition

E-Resources -

- 1. <u>https://www.postgresql.org/docs/current/</u>
- 2. https://www.mongodb.com/docs/atlas/

Semester II

Title of the	MTS-551 Abstract Algebra	Number of	
Course and		Credits: 04	
Course Code			
	Course Outcomes (COs)		
	On completion of the course, the students will be able to:		
CO1	Define basic concepts of Group theory with focus on axioma	atic theory and	
	key concepts associated with groups.		
CO2	Articulate the fundamental concepts of abstract algebra such as groups and		
	rings and their role in modern Mathematics and applied contexts.		
CO3	Demonstrate capacity for mathematical reasoning through analyzing, proving,		
	and explaining concepts from abstract algebra. Describe the structure of certain		
	finite groups using Sylow's theorems.		
CO4	Compare different types of groups and rings. Explain the notion of rings,		
	ideals.		
CO5	Justify theorems based on group theory, ring theory and articulate problem		
	solving techniques based on them.		
CO6	Construct the structure of finite fields.		

Unit No.	Title of Unit and Contents
Ι	Groups, Subgroups and Cyclic Groups:
	Definition and Examples of Groups; Properties of Groups; Order of a group;
	Order of an element in group; Subgroups; Subgroup Tests. Cyclic Groups;
	Properties of Cyclic Groups; Classification of Subgroups of Cyclic Groups.
	Permutation Groups- Isomorphism:
	Definition and notation; Cycles; Properties of Permutations; Even and
	odd permutations; Alternating Group of degree n., Isomorphism of
	Group; Properties of Isomorphisms; Cayley's Theorem; Automorphisms.
	Cosets, Lagrange's Theorem and Normal subgroups,
	Homomorphisms:
	Definition and properties of Cosets; Lagrange's Theorem and
	consequence; Normal Subgroups; Factor Groups; Application of Factor
	Groups; Group Homomorphisms; Definition and examples; Properties of
	Homomorphisms; First Isomorphism Theorem.
	Sylow Theorems (Without Proofs):
	Fundamental Theorem of Finite Abelian Groups; Isomorphism Classes of
	Abelian Groups; Proof of the Fundamental Theorem. 5.2 Conjugacy
	Classes; Class Equation; The Sylow Theorems; Applications of Sylow's
	Theorems.

II	Rings:
	Definitions and examples, simple properties of rings, Commutative rings, ring
	with unity, integral domain, field, skew field, definitions examples and
	interrelationship between them.
	Subring:
	Definition, Examples, Properties. Characteristic of an integral domain.
	Ideals and Factor Rings:
	Definitions & Examples, Properties of ideals, Prime Ideals, Maximal Ideals,
	Quotient rings
	Homomorphism and Isomorphism of rings:
	Definition and examples, properties of ring homomorphisms, fundamental
	theorem of ring homomorphism and its applications.
	Euclidean rings:
	Polynomial rings F[X] over a field F, F[X] is Euclidean ring, irreducible
	polynomial over a field, polynomials over a field of rationals, Gauss lemma
	and Eisenstein's criterion for irreducibility, Construction of finite fields.

- 1) Joseph Gallian, Contemporary Algebra, 9th Edition, Narosa Publishing House.
- 2) David S. Dummit, Richard M. Foote, Abstract Algebra, 2nd Edition, John Wiley and Sons (Indian Edition)
- 3) J. B. Fraleigh, Abstract Algebra, 7th edition
- 4) I. S. Luthar and I. B. S. Passi, Algebra (Volume 1) Groups (Narosa Publishing House)
- 5) I. N. Herstein, Topics in Algebra (Wiley-Eastern Ltd.)
- 6) M. Artin, Algebra (Prentice Hall)
- 7) N. S. Gopala Krishnan, University Algebra (Wiley-Eastern Ltd.)
- 8) C. Musili, Rings and Modules, 2nd Revised Edition, Narosa Publishing House.

Title of	the	MTS-552 Probability & Statistics	Number of
Course	and		Credits: 04
Course Co	de		
		Course Outcomes (COs)	
		On completion of the course, the students will be able	e to:
CO1	CO1 State basic concepts in probability theory and solve examples		
CO2	CO2 Discuss concepts of distributions and their parameters		
CO3	CO3 Apply the concepts of distributions to model a given data and check the goodness of fit		
CO4	CO4 Analyze the concept of correlation and Regression for a given data		
CO5	D5 Determine the statistical significance of Null Hypothesis with inference based tests		
CO6	CO6 Create methodologies to understand Random processes.		

Unit	Title of the Unit and Contents		
No			
1	Introduction to Probability		
	Classical definition of probability, Mutually Exclusive and Independent Events, Inclusion		
	Exclusion Principle, Conditional Probability, Bayes theorem and related problems		
2	Distribution Theory		
	Concept of Random variables (discrete & continuous) distribution function, Joint distributions,		
	Marginal distributions, Conditional distributions, Expected value and Variance of a random		
	variables. Also discussion on specific distributions which include Binomial, Poisson, Uniform,		
	Exponential, Normal distributions with specific examples		
3	Special Results		
	Discussion on Simple Random Walks, Union Bound Inequality, Markov and Chebyshev		
	Inequalities, Chernoff Bounds, Cauchy Schwarz Inequality, Jensen Inequality, Law of Large		
	Numbers, Central Limit theorem and problems related to all of these concepts		
4	Statistical Inference: Classical Methods		
	Introduction to Random Sampling, Concept of Point Estimation, Point Estimators of Mean and		
	Variance, Maximum Likelihood Estimation, Asymptotic properties of MLE's, Concept of		
	Interval Estimation, Finding Interval Estimators, Confidence intervals for normal Samples,		
	General Concepts in Hypothesis testing, P values and related problems		
5	Correlation and Simple Linear Regression		
	Concept of Pearsonian Correlation, Simple Linear Regression Model, Method of Least		
	Squares, Various Assumptions of the Simple Linear Regression Model		
6	Introduction to Random processes		
	Basic Concepts, pdfs and cdfs, Mean and Correlation functions, Multiple Random Processes,		
	Stationary Processes, Gaussian Random Processes		
-	Learning Decomposition		

- Sheldon Ross, Introduction to Probability & Statistics for Scientists and Engineers, 1) Academic Press
- Elliot Tannis and Robert Hogg, Probability & Statistical Inference, Pearson Edition George Casella and Roger Berger, Statistical Inference, Cenage Learning 2)
- 3)

Г

Title of the	MTS-553 Graph Theory and Its Applications	Number of
Course and		Credits: 04
Course Code		
	Course Outcomes (COs)	
	On completion of the course, the students will be able to:	
CO1	Define basic concepts of Graph theory with focus on key concept graphs.	s associated with
CO2	Illustrate various mathematical properties of graphs and solve exam properties.	ples to justify the
CO3	Apply basic graph theory, minimal weighted spanning tree a coloring algorithms.	lgorithms, graph
CO4	Compare different types of graphs and operations on graphs.	
CO5	Determine algorithms of fusion, matching algorithms, shortest Formulate	path algorithms
CO6	Formulate Matrix representation of graphs, shortest paths for variou	s graphs

Unit No.	Title of Unit and Contents
Ι	Graph Theory:
	Graph: Definition, vertex, edge, Terminal vertices, self-loop, parallel
	edges, incidence, adjacent, degree of vertex, isolated vertex, pendent vertex,
	null graph, hand shaking lemma, regular graph, bipartite graph, complete
	graph, complete bipartite graph.
	Matrix Representation: Incidence matrix, adjacency matrix,
	properties.Subgraph, Isomorphism and examples of isomorphic graphs.
	Operations on graphs: Union, intersection, deletion of vertex, deletion
	ofedge, ring sum, fusion.
	Connected graphs: Walk, paths, circuit, Theorems on connected
	graphs.
	Euler graph: Definition, examples, Chinese postman problem,
	Fleury's algorithm, Theorems on Eulerian graphs.
	Trees: Definition, pendent vertex in a tree, distance and centres in a tree,
	rooted and binary trees, spanning trees and rank nullity, fundamental
	circuits, fundamental cutset, vertex connectivity, edge connectivity,
	spanning trees, weighted graphs, Kruskal's algorithms, Prim's algorithm,
	Breadth first search algorithm, depth first search algorithm, Dijkstra's
	algorithm, Warshall Floyd algorithm, Theorems on trees.
	Directed graphs: Incident out of a vertex, incident into a vertex, indegree,
	out degree, isolated vertex, pendent vertex, types of digraphs, arborescence definition.
	Networks
	Flows and cuts, Max ow and min cut theorem, The Ford and
	FulkersonAlgorithm
	Graph Coloring:
	Vertex Coloring: K-coloring, K-colorable, Chromatic Number, K -
	Chromatic. Vertex coloring Algorithm: Simple Sequential Coloring, Largest -
	First Sequential Algorithm (Welsh and Powell) Smallest–Last Sequential
	Algorithm.
	Edge Coloring: Definition and Concept Only.
	Planar Graphs: Introduction Kuratowski's two graphs (K5, K3)

Euler's theorem, Examples based on Euler's theorem.
Matching and Factors: Matching in bipartite graphs, maximum
matchings, Hall's matching conditions, Min-Matching in bipartite
graphs, sets, applications and algorithms, maximum bipartite matching,
weighted bipartitematching, Tutte's 1 factor theorem, factors of graphs.

- 1) John Clark, D. A. Holton: A First Look at Graph Theory, World Scientific, 1991.
- 2) N. Deo, Graph theory with Applications to Computer Science and Engineering, PHI
- 3) Douglas B. West, Introduction to Graph Theory, Pearson Education, Second Edition Purna Chandra Biswal, Discrete Mathematics and Graph Theory, Fourth Edition (PHI.).

Г

Title of the		MTS-554 Numerical Analysis	Number of
Course a	nd		Credits: 04
Course C	ode		
		Course Outcomes (COs)	
		On completion of the course, the students will be able to:	
CO1	State	and apply different methods of Numerical Differentiation and Ir	ntegration
CO2	Expl	ain the basic principles and theory of interpolation	
CO3	Impl	ement all the standard curve fitting techniques	
CO4	Expl	ain basic methods of solving Linear and Non-Linear Equations	
CO5	Test	different methods of solving differential equations, compute and	evaluate differential
	equa	tions numerically	
CO6	Deve	elop the knowledge to compute the errors in all of the technique	es mentioned in the
	cours	se	

Unit No.	Title of the Unit and Contents
1	Solution to Non-Linear Equations
	Introduction to Big O notation, Types of Errors, Fixed point iterative method,
	Bracketing method for roots, initial approximation and convergence criteria, Newton
	Raphson and Secant method, Error Analysis, rate of convergence, Accelerated Newton
	Raphson Method, Mullers Method
2	Solutions to Linear and Non-Linear Systems
	Upper triangular linear systems, Gaussian Elimination and Pivoting, Triangular
	Factorization, Iterative methods to solve Linear Systems and their convergence,
	Newton's method to solve nonlinear systems, Computing Eigenvalues numerically
	using Power Method, computing Eigenvalues of Symmetric matrix using House
	holders' method.
3	Interpolation and Polynomial Approximation
	Introduction to the concept of Interpolation, Lagrangian Interpolation, Newton's
	Interpolation and its various forms (divided difference, forward and backward), Error
	Analysis with these approximations, Pade Approximations
4	Curve Fitting
	Least Square Line, Curve Fitting, Interpolation by Spline Functions, Fourier Series and
	Trigonometric Polynomials
5	Numerical differentiation and Integration
	Approximating the derivatives, various Numerical differentiation formulas, Introduction
	to Quadrature, Composite Trapezoidal and Simpson Rule, Error Computations in
	Numerical Integration
6	Solutions to Differential Equations
	Introduction to Ordinary differential equations, Euler's method, Heun method, Taylor
	series method, Runge Kutta methods of various orders, Predicator- Corrector Methods
	with precision and Error analysis
Learning 1	Resources

1) John Mathews & Kurtis Fink, Numerical Analysis using Matlab, Prentice Hall.

- 2) Kendall Atkinson, Numerical Analysis, Wiley Publications.
- 3) S. S. Sastry, Numerical Analysis, Prentice Hall India Publication.

Title of the	MTS570 (Practical III) Introduction to Web Technologies	Number of	
Course and		Credits: 02	
Course Code			
	Course Outcome (COs)		
	On completion of the course, the students will be able to:		
CO1	State design process for single-page applications using ReactJS.		
CO2	Illustrate the use of JavaScript in webpages.		
CO3	Demonstrate Bootstrap5 features		
CO4	Analyze the importance of user experience in designing of the	websites through	
	various web based technologies.		
CO5	Test and validate web applications using JavaScript.		
CO6	Write web pages using various web technologies.		

Practical Lab III: MTS-570 Introduction to Web Technologies

Unit	Title of Unit and Contents
No	
1	HTML5 What is HTML? Tags, Heading, paragraph, anchor, image, table, Lists (ordered, unordered, description), form, label, input, button, br, hr, script (simple JavaScript code) Audio, Video, Progress, Data list Tag, Header Tag, Footer Tag, Article Tag, Aside Tag, Canvas, SVG, Google Maps, Geolocation, Web Storage
2	CSS3 What is CSS? Syntax, Selector, Types, Comments Background, colors, Border, Margin, Padding, Height/Width, Box Model, Outline, Text, Fonts, Icons, Links, Lists, Tables, Display, Max-width, Position, Overflow, Inline-block, Align, Combinators, Pseudo-classes (link, visited, hover, active, focus), Pseudo- elements (first-line, first letter, before, after), Tooltips, Attribute Selectors, Forms Rounded Corners, Backgrounds, Colors, Text, Fonts, Images, Buttons, Multiple Columns, User Interface, Box Sizing, Flexbox, Media Queries, MQ Examples
3	JavaScript
	Introduction, JavaScript BOM, Comments, Variables, Operators, Data Types, Functions, Objects, Scope, Events (onclick, onchange, onmouseover, onmouseout, onkeydown, onload),
	Strings, String Methods (indexOf(), lastIndexOf(), search(), slice(), substring(),substr()),
	Numbers, Number Methods (toString(), toExponential(), toFixed(), toPrecision(), valueOf()),
	Math (min (), max (), pow (), random (), sqrt(), ceil(), floor() methods), Array, Array methods (toString(), join(), pop(), push(), shift(), unshift(), splice(),concat()),
	Date & its methods, Booleans, Comparisons, Conditions, Switch, for loop, while loop, break, Type Conversion, Debugging, Class, Objects, Object Properties, Object Methods
	Asynchronous Programming
	Callbacks, Promises. Async-Await

4	Bootstrap 5
	What is Bootstrap, Container, Jumbotron, Button, Grid, Table, Form, Alert, Badges,
	Cards, Pagination, Image, Carousel, Progress Bar, List Group, Dropdown, Collapse, Tabs
	/ Pills, Navbar, Input Types (Check Box, Radio Button), Modals, Popover, Flex
5	Introduction to ReactJS
	Overview, Virtual DOM, JSX, Components, Styling, Props, State management, Forms,
	Routing, React Redux

- 1) Beginning HTML5 and CSS3 by Christopher Murphy, Divya Manian, Oliver Stud Holme andRichard W. Clark (APress)
- 2) Beginning JavaScript by Jeremy McPeak and Paul Wilton (Wrox)
- 3) Beginning jQuery by Jack Franklin (APress)
- 4) Bootstrap by Jake Spurlock (O'Reilly)
- 5) Head First HTML5 Programming, Building Web Apps with JavaScript By Eric Freeman,Elisabeth Robson (O'Reilly)
- 6) Head First JavaScript Programming By Eric T. Freeman, Elisabeth Robson (O'Reilly)
- 7) Head First Ajax By Rebecca M. Riordan (O'Reilly)
- 8) Head First jQuery, A Brain-Friendly Guide By Ryan Benedetti, Ronan Cranley (O'Reilly)
- 9) Roger S. Pressman. *Software Engineering: A Practitioner's Approach* (Sixth Edition, International Edition). McGraw-Hill, 2005.
- 10) Ian Sommerville. *Software Engineering* (Seventh Edition). Addison -Wesley, 2004.

Important URLs: <u>https://www.w3schools.com/</u>, <u>https://getbootstrap.com/</u>

Title of Course Course C	and with Python Credits: (
	Course Outcome (COs)		
CO1	On completion of the course, the students will be able to:		
CO1	Recall the basic concepts programming languages Discuss fundamentals of data structures		
CO2 CO3			
C03	1		
C04 C05			
C03		••	
Unit No.	Title of the Unit		
1	ntroduction What is Python? Features, History, Version, Applications, Install Python, Python Path ython Example, Execute Python, Variables, Keywords, Identifiers, Literals, Operators comments, Control Statements		
2	 Strings and Data Structures Accessing Strings, Basic Operators, Membership Operators, Relational Operators, Slic Notation, String functions and Methods Data Structures: List - Accessing Lists, List Operations, Functions and Methods of List Fuple - Accessing Tuple, Tuple Operations, Functions and methods of Tuples, why us Fuple? Python Dictionary - Accessing Values, Functions & Methods 		
3	inctions hilt-in Functions, User defined Functions, invoking a Function, return, Statement gument and Parameter, Positional Argument (Required Argument), Default Argument byword Argument, Anonymous Function, Difference between Normal Functions and honymous, Function, Scope of a Variable		
4	Files I/O and Modules Input from Keyboard, File Handling, Attributes of File, Modes of File, File Handling Methods-What is a Module? Importing a Module, Built in Modules in Python, Package		
5	Python-database Connectivity Establishing a Connection, CRUD (Create, Read, Update, Delete) Operations		
6	Introduction to data processing and visualization Concept, Overview of the data processing, Various applications and branches, what dataset? importing dataset, various sources of datasets, visualization - concept and use		
7	Python Libraries Overview of few important Python Libraries for data processing and visualization NumPy, Pandas: importing dataset, dataframe, series different functions - Scikit-Le etc, matplotlib	n	

Practical Lab IV: MTS-571 Programming and Problem solving with Python

- 1) Beginning-Python, Second Edition by Magnus Lie Hetland
- 2) The Complete Reference Python by Martin C. Brown
- 3) Head First Python by Patrick Barry
- 4) Learning Python, O'Reilly by Mark Lutz
- 5) Python in a Nutshell, O'Reilly by Alex Martelli

Important URL:

• <u>https://www.python.org</u>