

Fergusson College (Autonomous) Pune

Learning Outcomes-Based Curriculum

for

M. Sc. Physics With effect from June 2023

Implementation of NEP-2020 for Two Year PG program

(As per GoM GE 16/05/2023)

Illustrative Credit distribution structure for Two Years PG (M.Sc.) and Ph. D. Programme

Year	Level		Maj	or		OJT	RP	Cum.	Degree
(2Yr PG)		Sem. (2 Yr)	Mandatory	Electives	RM	/ FP		Cr.	
		Sem I	12-14 (2*4+2*2 Or 3*4+2)	4	4			20-22	PG Diploma (after 3 Yr
Ι	6.0	Sem II	12-14 (2*4+2*2 Or 3*4+2)	4		4		20-22	Degree)
Cum. Cr. For PG Diploma		24-28	8	4	4	-	40-44		
	Exit o	option: PG	Diploma (40-4	44 Credits)	after T	hree Y	ear U	G Degre	e
II	65	Sem III	12-14 (2*4+2*2 Or 3*4+2)	4			4	20-22	PG Degree After 3-Yr UG
0.	0.5	Sem IV	10-12 (2*4 +2 or 3*4)	4			6	20-22	Or PG Degree
Cum. Cr. for 1 Yr PG Degree		22-26	8			10	40-44	after 4- Yr	
Cum. Cr. for 2 Yr PG Degree		46-54	16	4	4	10	80-88		
2 Year PG De	2 Years-4 Sem. PG Degree (80-88 credits) after Three Year UG Degree or 1 Year-2 Sem PG Degree (40-44 credits) after Four Year UG Degree								
8.0		Course Wor (3*4)	k Min. 12	Tr Te Ec Pe	aining i eaching lucatior edagogy	n / n/ r: 4	16 + Ph.D. Work	Ph.D. in Subject	

Abbreviations: Yr.: Year; Sem.: Semester; OJT: On Job Training: Internship/ Apprenticeship; FP:

Field projects; RM: Research Methodology; Research Project: RP; Cumulative Credits: Cum. Cr.

Table-2: Department wise Courses Titles as per NEP guidelines

(Science faculty)

Semester	Paper Code	Paper Title	Credits
Ι	PHY-501	Classical Mechanics	4
	PHY-502	Mathematical Methods in Physics	4
	PHY-503	(Elective –I: Electronics)	4
	PHY-504	OR (Elective-II: Electronic Instrumentation)	
	PHY-510	Research Methodology (Theory)	4
	PHY-520	Practical - I	2
	PHY-521	Practical - II	2
		Total Semester Credits	20
II	PHY-551	Quantum Mechanics	4
	PHY-552	Atoms, Molecules and Solids	4
	PHY-553	(Elective-I: Materials Science)	4
	PHY-554	OR (Elective-II: Thin Film Physics)	
	PHY-560	On Job Training / Field Project	4
	PHY-570	Practical - III	2
	PHY-571	Practical - IV	2
		Total Semester Credits	20
	·	Total PG-I Credits	40

Semester	Paper Code	Paper Title	Credits
III	PHY-601	Electrodynamics	4
	PHY-602	Statistical Mechanics	4
	PHY-603 OR	(Elective-I Experimental Techniques in Physics)	4
	PHY-604	(Or Elective-II Atmospheric Science)	
	PHY-610	Research Project	4
	РНҮ-620	Practical: Physics Practical Laboratory-V (Special Lab-I) (Materials Science)	2
	РНҮ-621	Practical: Physics Practical Laboratory-VI (MATLAB)	2
		Total Semester Credits	20
IV	PHY-651	Solid State Physics	4
	РНҮ-652	Nuclear Physics	4
	PHY-653 OR	(Elective-I Astronomy and Astrophysics)	4
	PHY-654	(Or Elective-II Physics of Nanomaterials)	
	PHY-660	Research Project	6
	РНҮ-670	Practical: Physics Practical Laboratory-VII (Special Lab-II) (Atmospheric Science + Astronomy and Astrophysics)	2
		Total Semester Credits	20
		Total PG-II Credits	40

	Program Outcomes (POs) for M. Sc. Programme
PO1	Disciplinary Knowledge:
	Demonstrate comprehensive knowledge of the discipline that form a part of an
	postgraduate programme. Execute strong theoretical and practical understanding generated
	from the specific programme in the area of work.
PO2	Critical Thinking and Problem solving:
	Exhibit the skill of critical thinking and understand scientific texts and place scientific
	statements and themes in contexts and also evaluate them in terms of generic conventions.
	Identify the problem by observing the situation closely, take actions and apply lateral
	thinking and analytical skills to design the solutions.
PO3	Social competence:
	Exhibit thoughts and ideas effectively in writing and orally; communicate with others
	using appropriate media, build effective interactive and presenting skills to meet global
	competencies. Elicit views of others, present complex information in a clear and concise
	and help reach conclusion in group settings.
PO4	Research-related skills and Scientific temper:
	Infer scientific literature, build sense of enquiry and able to formulate, test, analyse,
	interpret and establish hypothesis and research questions; and to identify and consult
	relevant sources to find answers. Plan and write a research paper/project while
	emphasizing on academics and research ethics, scientific conduct and creating awareness
	about intellectual property rights and issues of plagiarism.
PO5	Trans-disciplinary knowledge:
	Create new conceptual, theoretical and methodological understanding that integrates and
	transcends beyond discipline-specific approaches to address a common problem.
PO6	Personal and professional competence:
	Perform independently and also collaboratively as a part of team to meet defined
	objectives and carry out work across interdisciplinary fields. Execute interpersonal
D O F	relationships, self-motivation and adaptability skills and commit to professional ethics.
PO 7	Effective Citizenship and Ethics:
	Demonstrate empathetic social concern and equity centred national development, and
	ability to act with an informed awareness of moral and ethical issues and commit to
DOG	professional ethics and responsibility.
PO8	Environment and Sustainability:
	Understand the impact of the scientific solutions in societal and environmental contexts
DOG	and demonstrate the knowledge of and need for sustainable development.
P09	Self-directed and Life-long learning:
	Acquire the ability to engage in independent and life-long learning in the broadest context
	of socio-technological changes.

Deccan Education Society's

Fergusson College (Autonomous), Pune

Program Specific Outcomes (PSOs) and Course Outcomes (COs) 2023-24

Department of Physics

Programme: M.Sc. Physics

	Program Specific Outcomes (PSOs) for M. Sc. Physics				
PSO No.	Program Specific Outcomes(PSOs)				
	Upon completion of this programme the student will be able to				
PSO1	Academic competence: (i) Associate the universal applications of physics in all				
	disciplines. Articulate fundamental and advance concepts, principles and processes				
	underlying physical phenomena in different branches ranging from classical mechanics				
	to quantum mechanics and extended to electrodynamics, statistical mechanics, atomic,				
	molecular and solid state physics, nanomaterials and electronic science. (ii)				
	Demonstrate mathematical, statistical and computational ability in problem solving.				
	Demonstrate and explain various mathematical techniques, numerical methods,				
	experimental techniques to broaden independent thinking and scientific temper.				
PSO2	Personal and Professional Competence:				
	(i) Execute experimental and project work independently. (ii) Carry out laboratory				
	oriented numerical calculations and experimental data interpretation. Analyse self-				
	generated data through experiments as well as archival data (iii) Formulation of				
	physics concepts, effective presentation and communication skills through seminars				
	and group discussions. Develop skills of technical report writing along with precise				
	presentation with effective communication. Apply appropriate concepts and various				
	methods to solve wide range of problems. Incorporate the hands-on training of				
	soldering to connect electronic components for designing circuits for device				
DCO2	applications.				
PS03	Research Competence:				
	(1) Use of in-nouse laboratory setup for building instrumentation. Integrate and				
	Apply experimental skills for interdisciplinary research work. Beview of research				
	Apply experimental skills for metalsciplinary research work. Review of research				
	research and need for interdisciplinary research Carry out projects in basic, applied and				
	interdisciplinary science to develop conceptual understanding and an orientation				
	towards research Interpret and analyse the results of the research project Integrate				
	mathematical / statistical and computational data to analyse and formulate theories				
	Implement Projects and research paper writing and book reviews.				
PSO4	Entrepreneurial and Social competence:				
	Enhance analytical skills and research aptitude in specific areas related to physics				
	including materials science, thin film technology, solar energy, radiation dosimetry,				
	astrophysics, atmospheric science, energy generation and storage for academic				

research and industrial applications. Develop job oriented analytical skills on an
advanced level needed in industry, consultancy, education, research or public
administration.
(i) Employ and develop skills in specific areas related to physics and engineering for
industrial application, production and technology development and transfer.
(ii) Develop social awareness through internships and science popularization
programs. Execute awareness of ethical issues: emphasis on academic and research
ethics, need and value of lifelong learning, international perspective, importance of
academic and research ethics, human rights, scientific misconduct, intellectual
property rights and issues related to cyber laws and plagiarism.

Course Outcomes (COs) and Syllabus

F.Y. M. Sc. Semester I						
Title of theCourse andCourse Code	d CLASSICAL MECHANICS (PHY-501)					
	On completion of the course, the students will be able to:	·				
CO1 Describe various approaches for finding solutions of equations of motion						
CO2	Discuss and give examples of constraints and methods of eliminating them.					
CO3	Apply different mathematical tools and techniques to find solutions of problems					
	in Mechanics.					
CO4	Compare and contrast different approaches of solving equations of	motion.				
CO5	Evaluate the generating functions and assess different	mathematical				
	transformations.					
CO6	Develop the techniques to analyze motions in accelerated, frames of	of references.				

Unit No.	Title of Unit and Contents				
Unit-I	Constrained motion and Lagrangian formulation:				
	Constraints and their types. Generalized coordinates, Lagrange's equations of motion,				
	including velocity dependent potentials. Properties of kinetic energy function, theorem				
	on total energy, generalized momenta, cyclic-coordinates, integrals of motion, Jacobi				
	integrals and energy conservation. Concept of symmetry, invariance under Galilean				
	transformation.				
Unit-II	Variational principle and Hamiltonian formulation:				
	Variational principle, Euler's equation, applications of variational principle, shortest				
	distance problem, Brachistrochrone, Geodesics of a Sphere. Hamilton's function and				
	Hamilton's equation of motion, configuration space, phase space and state space,				
	Lagrangian and Hamiltonian of relativistic particles.				
Unit-III	Canonical transformations and Poisson brackets:				
	Legendre transformations, Generating function, Conditions for canonical transformation				
	and problem. Definition, Identities, Poisson theorem, Jacobi-Poisson theorem, Jacobi				
	identity, (statement only), invariance of Poisson Bracket under canonical				
	transformation.				
Unit-IV	Non inertial frames of references, central force:				
	Rotating frames of reference, inertial forces in rotating frames, Larmour precession,				
	electromagnetic analogy of inertial forces, effects of Coriolis force, Foucault's				
	pendulum.				

- 1. Classical Mechanics by H. Goldstein, Narosa Publishing Home, New Delhi.
- 2. Classical Dynamics of Particles and Systems by Marion and Thomtron, Third Edition, Horoloma Book Jovanovich College Publisher.
- 3. Classical Mechanics by P. V. Panat, Narosa Publishing Home, New Delhi.
- 4. Classical Mechanics by N. C. Rana and P. S. Joag, Tata Mc-Graw Hill PublishingCompany Limited, New Delhi.
- 5. Introduction to Classical Mechanics by R. G. Takawale and P. S. Puranik, Tata Mc-Graw Hill Publishing Company Limited, New Delhi.
- 6. Classical Mechanics by J. C. Upadhyaya, Himalaya Publishing House.

Title of the		Credits : 04		
Course and Mathematical Methods in Physics (PHY-502)				
Course Code				
	On completion of the course, the students will be able to:			
CO1	Describe the concepts of Complex analysis, Fourier and Laplace Transformations.			
CO2	Discuss basic theory of Linear Algebra, Matrix algebra and special functions.			
CO3	Apply mathematical tools, special functions on polynomials to solve physical			
	problems and identify mathematical concepts related to physics to generate			
	solutions.			
CO4	Outline the basic elements of complex analysis and formulate the important			
integral theorems. Determine the residues of a complex function an		and use the		
	residue theorem to compute certain types of integrals.			
CO5	Analyze concepts of vector space, matrix algebra and inner product spaces.			
CO6	Construct Fourier series, Fourier and Laplace transforms to solve mathematical			
	problems relevant to the physical sciences.			

Unit	Title of Unit and Contents				
No.					
Ι	Complex Analysis:				
	Complex variable, Function of a complex variable, Limit of a function of a complex				
	variable, Continuity, Differentiability, Analytic functions, Cauchy-Riemann Equations,				
	Harmonic Functions, Complex Integration, Cauchy integral theorem, Cauchy integral				
	formula, Derivatives of analytic functions, Power Series-Taylor's theorem, Laurent's				
	theorem, Calculus of Residues, Cauchy's Residue theorem, Evaluation of real definite				
	integrals.				
	(References: 1-3)				
II	Linear Algebra:				
	Vector Spaces and Operators:				
	Vector spaces and subspaces, Linear Spans, Linear dependence and independence, Basis				
	and Dimensions.				
	Matrix algebra:				
	Matrix representation of a linear operator, Change of basis, Polynomials of matrices,				
	Characteristic polynomial, Cauchy-Hamilton theorem, Diagonalization, Eigenvalues and				
	Eigenvectors.				
	Inner Product Spaces, Orthogonality:				
	Inner product spaces, Orthogonality, Orthogonal sets and basis, Gram-Schmidt				
	orthogonalization process.				
	(References: 4, 5)				
III	Special functions:				
	Legendre, Hermite and Laguerre function – Generating function, Recurrence relations				
	and their differential equations, Orthogonality properties, Bessels's function of first kind,				
	Spherical Bessel function, Associated Legendre function, Spherical harmonics.				
	(References: 3, 6)				
IV	Fourier series and integral transforms:				
	Fourier Series: Definition, Dirichlet's condition, Convergence, Parseval's identity,				
	Fourier Integral and Fourier transform, Convolution theorem, Applications of Fourier				
	Transform to solve differential equations, Laplace transform and its properties,				

Applications of Laplace transform to solve differential equations, Laplace transform of
Dirac Delta function.
(<i>References: 3, 6-10</i>)

- 1. Complex Variables and Applications J.W.Brown, R.V.Churchill, 7thEdition, Mc-Graw Hill.
- 2. Complex Variables Schaum's Outlines Series, 2ndEdition, Tata Mc-GrawHill Edition.
- 3. Higher Mathematical Physics- H.K.Dass& Dr. Rama Verma-S. Chand. & Co. Pvt. Ltd
- 4. Linear Algebra Schaum's Outlines Series- 3rdEdition, Tata Mc-Graw Hill Edition.
- 5. Matrices and Tensors in Physics, A. W. Joshi, 3rdEdition, New Age International.
- 6. Mathematical Methods for Physicists Arfken& Weber 6thEdition-AcademicPress, N.Y.
- 7. Mathematical Methods in the Physical Sciences Mary Boas, John Wiley & Sons.
- 8. Fourier series Seymour Lipschutz, Schaum's Outlines Series. Tata Mc-Graw Hill Edition
- 9. Laplace Transform Seymour Lipschutz, Schaum's Outlines Series. Tata Mc-Graw Hill Edition
- 10. Mathematical Methods in Physics B. D. Gupta.

Title of the		Credits : 04	
Course and	Electronics (PHY-503)	Hours : 60	
Course Code			
	On completion of the course, the students will be able to:		
CO1	List special and general purpose integrated circuit chips.		
CO2	Explain internal block diagram and working of the ICs.		
CO3	CO3 Illustrate the use of dedicated ICs in different circuits.		
CO4	Explain working of circuits using operational amplifiers, timers, PLLs	s and SMPS.	
CO5	Compare performance parameters of Op-amps and discrete circuits.		
CO6	Design different circuits for dedicated applications.		

Unit No.	Title of unit and Contents
Ι	Applications of special function ICs:
	Study of Timer IC 555: Block diagram, Astable and monostable multivibrator
	circuits. Study of VCO IC 566 and its applications. Study of PLL IC 565: Block
	diagram, applications like frequency multiplier, FSK, FM demodulator. Function
	generator using two OPAMPs with variable controls, Astable and monostable
	multivibrators using OPAMP.
	References: 1 to 5
II	Regulated power supply
	Concept of Voltage Regulator using discrete components. Types of power supplies:
	series and shunt regulators, CVCC, SMPS. Three pin regulators. (IC 78XX/79XX,
	IC LM 317). Basic low and high voltage regulator and foldback current limiting
	using IC 723.Concept and applications of DC - DC converter.
	References: 4, 5, 6
III	A. Digital Logic circuits I: Combinational Logic:
	Review of Boolean identities and its use to minimize Boolean expressions.
	Minimization of Boolean expressions using Karnaugh map (up to 4 variables).
	B. Digital Logic circuits II: Sequential Logic:
	Review of synchronous, asynchronous and combinational counters (4-bit). Decade
	counter IC 7490 with applications. Shift registers using IC 7495: applications as
	SISO, SIPO, PISO and PIPO. Up-down counter

	References: 7, 8
IV	Data Converters:
	Analog to digital converters: Binary weighted type, R-2R ladder type, Study of IC
	0808. Digital to analog converters: Single slope, Dual slope, Flash, Counter type,
	Continuous type, Simultaneous type, Successive approximation type, Study of IC
	7106
	References: 7, 8, 9

- 1. Operational Amplifiers: G. B. Clayton (5th edition)
- 2. OPAMPS and Linear Integrated Circuits: Ramakant Gayakwad, Prentice Hall
- 3. Linear Integrated Circuits: D. Roy Choudhary, Shail Jain
- 4. Electronic Principles: A. P. Malvino, TMH
- 5. Power Supplies: B. S. Sonde
- 6. SMPS, Inverters, Converters: Gottlieb
- 7. Digital Principles and Applications: Leach and Malvino
- 8. Digital Electronics: R. P. Jain
- 9. Data Converters: B. S. Sonde.

Title of the		Credits : 04
Course and	Electronic Instrumentation (PHY-504)	Hours: 60
Course Code		
On completion of the course, the students will be able to:		
CO1	Describe the evolution and history of units and standards in Measurements.	
CO2	Summarize the various parameters that are measurable i	n electronic
	instrumentation.	
CO3	Employ appropriate instruments to measure given sets of parameters.	
CO4	Identify the construction of testing and measuring set up for electronic systems.	
CO5	Evaluate instrumentation concepts which can be applied to Control systems	
CO6	Specify the usage of various instrumentation standards.	

Unit No.	Title of unit and Contents	
Ι	General Background and Measurements:	
	1.1 General configuration and functional description of measuring instruments, few	
	examples of instruments and their functional description. (Ref.1: #2.1 to 2.4). Input	
	output configuration of measuring instruments, methods of correction of unwanted	
	inputs. (Ref.1: #2.5)	
	1.2 Qualities of measurements (Ref. 9 Ch#1) Static characteristics, Errors in	
	measurement, Types of errors, sources of errors (Ref. 9 Ch#1) Dynamic	
	characteristics: Generalized mathematical model of measurement System, order of	
	instruments: zero, first and second order. Step, ramp and frequency response of first	
	order instruments (Ref.1: # 3.3 pp 94 to 115 & 123 to 131) References: 1, 3, and 9.	
II	Transducers	
	2.1 Electrical transducers, resistive, strain gauge, thermistor, inductive transducers,	
	variable reluctance, LVDT, pressure inductive, capacitive transducers, piezoelectric	
	transducer, photoelectric, magneto resistive sensors. Transducers for displacement,	
	velocity, acceleration.	

	2.2 Fluid flow, fluid rate and velocity. Various temperature transducers: Acoustic		
	temperature sensor, high temperature measurement using a cooled thermocouple		
	(Ref.1), Humidity sensors, conductivity measurements, PMT, Optical pyrometry		
	(with at least one application of each transducer) References: 9		
III	Signal Conditioners and Data Acquisition and Conversion		
	3.1 Signal conditioners: Op-amps, instrument amplifier, bridge, phase sensitive		
	detector (References: 9: Chapter 17).		
	3.2 Data acquisition and conversion D to A and A to D converters, Data loggers,		
	ADC digital transducer (optical transducer) Data acquisition system. ICs available:		
	ADCs, DACs (Ref 9).		
IV	Indicators, Display System and Recorders		
	4.1 Digital display system with LED and LCD. Printers: principle of Laser printers		
	only		
	4.2 Introduction to microprocessor based instruments, with suitable examples.		
	Stepper motor controller and basic idea of process control (References: 9).		

- 1. Measurement Systems- Applications and Design.4th Edn E.O. Doeblin.
- 2. Measurement System Applications and Design by E.O. Doblin and Manik
- 3. Instrumentation, Measurement and Systems. Nakra and Chaudhary
- 4. Electronic Instrumentation and Measurement Techniques by A.D. Helfrick and W. D. Cooper (Pearson)
- 5. Instrumentation, Devices and Systems. Rangan, Mani and Sarma Prentice Hall Of India.18
- 6. Process Controlled Instrumentation by C.D. Johnson
- 7. Elements of Electronic Instrumentation and Measurement. 3rd Edn. Joseph Carr. (Pearson)
- 8. Sensors and Transducers, Patranabis
- 9. Electronics Instrumentation, Kalsi (Tata Mcgraw-Hill).

Title of the		Credits : 04
Course and	Research Methodology (PHY-510)	Hours : 60
Course Code		
	On completion of the course, the students will be able to:	
CO1	Learn the various aspects of the research process, framing us	eful research
	questions, research design, data collection, analysis, writing and prese	entation
CO2	Understand the research problem, methods/techniques to be adopted	
CO3	Apply statistical tools for analysing the data while performing their research	
CO4	Develop skills in qualitative and quantitative data analysis and presen	tation
CO5	Analyse for fitting, errors in the measurements and able to withdraw	w conclusions
	from the analysed data	
CO6	Execute a quality research paper and patents in science and technolog	у

Unit No.	Title of unit and Contents
Ι	History of research. Indian, Egyptian, Greek ideas methodologies and research in
	agriculture, chemistry, metallurgy, medical. Ancient Indian research methodology
	applications.
II	Statistical analyses and its significance, Exploratory and confirmatory research, Planned
	and ad-hoc methods of data collection, Non-response and methods of recovering the

	missing response, Various software for statistical analysis.
	The module will consist of case studies of the research performed in various subjects using
	statistical methods, Error and noise analysis, curve fitting.
III	Literature search, selection of research topic (case study based), maintaining laboratory
	records (case study based). Safety in Laboratories, Ethical considerations, effective verbal
	and non-verbal communication, field data collection, safety in field.
IV	Writing research paper and/or thesis, making a presentation, writing a research proposal,
	and patents in Science, technology.

- 1. 'History of the Scientific Methods' by Martin Shuttleworth,
- https://explorable.com/history-of-thescientific-method.
- 'The Statistical Analysis of Experimental Data' by, John Mandel, ISBN: 0486646661, ISBN13: 9780486646664.
- 3. Research Methodology Methods and Techniques by C.R. Kothari, New Age International (P) Ltd. Publishers.

Title of the	Practical - I: Physics Practical Laboratory-I (General Lab-I) Credits : 02	
Course and	(PHY-520)	
Course Code		
	Course Outcomes (COs)	
On completion of the course, the students will be able to:		
CO1	Tabulate the appropriate experimental data accurately and keep systematic record	
	of general laboratory experiments.	
CO2	Discuss the results, findings using the physical scientific framework and learn	
	experimental tools.	
CO3	Interpret professional quality of textual and graphical presentations of laboratory	
	data and computational results.	
CO4	Analyze various experimental results by developing analytical abilities to address	
	real applications.	
CO5	Evaluate possible causes of discrepancy in practical experimental observations and	
	results in comparison to theoretical results.	
CO6	Develop the skills related to betterment in education and research.	

Sr. No.	Title of the Experiment
1.	Photoconductivity:
	a) To plot the current voltage characteristics of a CdS photo-resistor at constant
	irradiance.
	b) To measure the photocurrent as a function of irradiance at constant voltage.
2.	Speed of Light:
	To determine the speed of light using transit time of light pulse as a function of a
	reflecting mirror.
3.	Faraday Effect: Rotation of the polarization plane Φ and 2Φ as a function of the
	magnetic field.
4.	Dielectric constant:
	a) To Measure the charge Q on a plate capacitor as a function of the applied voltage E.
	b) To determine the capacitance C as a function of area A of plates.
	c) To determine the capacitance C with different dielectrics between the plates.
	d) To determine the capacitance C as a function of the distance d between the plates.
5.	Millikan's Oil Drop Method:
	To measure the rise and fall times of the oil droplets at different voltages having

	different charges. a) To determine the radii of droplets. b) To determine the charge ' e '
	on the droplets.
6.	Michelson's Interferometer:
	To determine the wavelength of He-Ne LASER by using Michelson's Interferometer
	apparatus.
7.	Specific Heat of Solids:
	To determine the specific heat of copper, lead and glass.
8.	Electron Spin Resonance:
	To study the Electron Spin Resonance and to determine Lande's g-factor
9.	Frank-Hertz experiment: To study the discrete energy levels using Frank-Hertz
9.	Frank-Hertz experiment: To study the discrete energy levels using Frank-Hertz experiment
9. 10.	Frank-Hertz experiment: To study the discrete energy levels using Frank-Hertz experimentG. M. Counter: Characteristics of GM tube using β-ray source.
9. 10. 11.	 Frank-Hertz experiment: To study the discrete energy levels using Frank-Hertz experiment G. M. Counter: Characteristics of GM tube using β-ray source. Zeeman Effect

Title of the	Practical - II: Physics Practical Laboratory-II (Computational	Credits : 02	
Course and	Lab) (PHY-521)		
Course Code			
Course Outcomes (COs)			
On completion of the course, the students will be able to:			
CO1	Identify the objectives of a given data computation-based experimen	ts.	
CO2	Interpret the proper numerical method of data computation.		
CO3	Implement proper use of data to solve given problem.		
CO4	Analyse the data for a given numerical method and the obtained resu	ılts.	
CO5	Evaluate the accuracy of common numerical methods.		
CO6	Compile their computational skill to solve common and scientific pr	oblems.	

Sr. No.	Title of the Experiment
1.	Fitting of the Given Data (Photodiode Data) by using Least Square Method (Linear and
	Exponential)
2.	Bisection Method
3.	Regula Falsi Method
4.	Newton-Raphson Method
5.	Secant Method
6.	Successive Approximation
7.	Gauss Elimination Method, Gauss Seidel Iterative Method
8.	Use of Lagrange Interpolation & spline Interpolation Method
9.	Trapezoidal and Simpson's Rule
10.	Gaussian Quadrature Formulae
11.	Euler's Method
12.	Runge-Kutta 2 nd order Method
13.	Runge-Kutta 4 th order Method

F.Y. M. Sc. Semester II		
Title of the		Credits : 04
Course and	Quantum Mechanics (PHY-551)	Hours : 60
Course Code		
	On completion of the course, the students will be able to:	
CO1	CO1 Recall and outline basic postulates of Quantum Mechanics and Simple stationary	
	state problem.	
CO2	Explain theory of angular momentum, spin matrices and compute C	lebsh-Gordan
	Coefficient.	
CO3	Demonstrate and interpret solutions of Schrodinger equation for st	ationary state
	problems.	
CO4	Categorize different applications of approximation methods to	o solve time
	dependent and time independent Hamiltonian systems.	
CO5	Compare different approximation methods in terms of validity.	
CO6	Specify problems based on concepts of stationary states, angular m	omentum and
	approximation method.	

Unit No.	Title of Unit and Contents
Ι	Introduction, Basic postulates of Quantum Mechanics, Simple stationary state
	problem:
	Inadequacy of classical Physics, Formation of wave packet and uncertainty principle,
	Schrodinger's wave equation and probability interpretation.
	Basic Postulates of Quantum mechanics:
	i) The state of the system: probability density, superposition principle,
	ii) Observable and operators: self adjoint operator, commutation
	iii) Measurement in Quantum mechanics: Expectation value, complete sets of
	commutating operator, eigen value and eigen function.
	iv) Time evolution of system's state: time evolution operator, stationary states time
	independent potentials
	Simple stationary state problem: particle in a rigid box and a non-rigid box,
	potential barrier, hydrogen atom.
II	Set of discrete and continuous eigenvalues, completeness and closure property, physical
	interpretation of eigen value and eigen function and expansion coefficient.
	Dirac notation: Hilbert space, Dirac's bra and ket notation, dynamical variables and
	linear operators, projection operators, unit operator, unitary operator, matrix
	representation of an operator, change of basis, unitary transformation. Eigen values and
	eigen functions of simple harmonic oscillator by operator method.
III	Angular Momentum: General formalism of angular momentum, matrix representation
	of angular momentum, geometrical representation of angular momentum, Orbital
	angular momentum: Eigen value equation of L^2 and L_z operator. Functions of Orbital
	and Spin angular momentum, General theory of spin, Pauli theory of spins (Pauli's
	matrices)
	Addition of angular momenta, Computation of Clebsch-Gordon coefficients in case
	$(J_1=1/2, J_2=1/2).$

IV	Approximation Methods:
	Approximation methods for stationary states:
	Time-independent perturbation theory - Non degenerate and Degenerate perturbation
	theory.
	Variational method,
	Time-dependent Perturbation theory - Transition amplitude 1 st and 2 nd order, transition
	probability, Approximation Methods for constant and Harmonic perturbation, Fermi's
	golden rule.

- A Text-book of Quantum Mechanics by P. M. Mathews and K. Venkatesan. 1.
- 2. Quantum Mechanics NouredineZettili, A John Wiley and Sons, Ltd., Publication
- 3. Quantum mechanics by A. Ghatak and S. Lokanathan
- 4. Quantum Mechanics by L. I. Schiff
- Modern Quantum mechanics by J. J. Sakurai 5.
- Quantum Physics by R. Eisberg and R. Resnick 6.
- Introduction to Quantum Mechanics by David J. Griffiths 7.
- Introductory Quantum mechanics by Granier, Springer Publication. 8.
- Introductory Quantum Mechanics, Liboff, 4th Edition, Pearson Education Ltd
 Principles of Quantum Mechanics, Shankar R. IInd Edition (Plenum, 1994). 9.

Title of the		Credits : 04
Course and	Atoms, Molecules and Solids (PHY-552)	Hours : 60
Course Code		
	On completion of the course, the students will be able to:	
CO1	Describe the theories explaining the structure of atoms and the orig	in of observed
	spectra.	
CO2	Explain different types of spectra.	
CO3	Calculate quantities associated with different types of spectra exhibition	oited by atoms,
	molecules and solids, heat capacities using different models	and structural
	properties.	
CO4	Analyze spectra and identify the effect of magnetic and electric fields	s on it.
CO5	Determine the observed dependence of atomic spectral lines on exte	ernally applied
	electric and magnetic fields.	
CO6	Associate electromagnetic spectrum with the rotational, vibrational	and electronic
	spectra of diatomic molecules, and specify the types of transiti	ions based on
	selection rules. Compare different structures exhibited by materials	

Unit	Title of Unit and Contents
No.	
Ι	Atoms:
	Atomic structure and atomic spectra, quantum numbers, Pauli's exclusion principle,
	electron configuration, Terms for equivalent and non-equivalent electrons, Hund's
	rules, origin of spectral lines, selection rules, spectra of one electron atoms, spectra of
	two electron atoms, fine structure and hyperfine structure, Normal Zeeman effect and
	Anomalous Zeeman effect, Paschen- Back effect
	Reference: Banwell, Articles 5.1, 5.2, 5.3, 5.4, 5.6

II	Molecules:
	Molecular Spectra: Rotational and vibrational spectra for diatomic molecules,
	Electronics spectra of diatomic molecules, vibration course structure, vibrational
	analysis of band structure, Frank - Condon principle, Dissociation energy and
	dissociation products, rotational fine structure of electronic vibrational transitions,
	electronic angular momentum in diatomic molecules.
	Reference: Aruldhas, Articles 9.1 to 9.11
III	Resonance Spectroscopy:
	ESR: Principles of ESR, ESR spectrometer, total Hamiltonian, hyperfine structure.
	<i>Reference</i> : Aruldhas, Articles 11.1 to 11.5
	NMR: Magnetic properties of nucleus, resonance condition, NMR instrumentation,
	relaxation process, chemical shift, applications of NMR.
	<i>Reference</i> : Aruldhas 10.1 to 10.4, 10.7
IV	Crystal Diffraction & Lattice Vibrations of Solids:
	Laue theory of X-ray diffraction, Geometrical structure factor, Atomic scattering factor,
	calculations for sc, bcc, fcc, hcp and diamond structure. Vibrational modes of
	monatomic linear lattice & diatomic linear lattice, Acoustic and optical modes of
	vibration, Brillouin zone, Phonon. Lattice heat capacity, Einstein model and Debye
	model of lattice heat capacity, Normal and Umklapp processes.
	Reference: Kittle, Ch.2, Ch. 4, Ch.5 and Ref.5: Ch.2

- 1. Fundamentals of Molecular spectroscopy, C. N. Banwell and Elaine Mc Cash
- 2. Molecular structure and Spectroscopy, G. Aruldhas.
- Worecular structure and Spectroscopy, C. Patricia.
 Quantum Physics, Robert Eisberg and Robert Resnik
 Introduction to Solid States Physics, Charles, Kittle 7th Edition Solid States Physics, A.J. Dekkar.

Title of the		Credits : 04
Course and	Materials Science (PHY-553)	Hours : 60
Course Code		
On completion of the course, the students will be able to:		
CO1	Describe the mechanism and factors affecting the solidification pro-	cess in metals
	and alloys.	
CO2	Examine critical awareness of the relevance of phenomenon and la	ws governing
	solid solution formation.	
CO3	Calculate the sintering time for diffusion.	
CO4	Determine the phase rules, phase diagrams of single and multi-compo	nent systems.
CO5	Evaluate theory of the atomistic and defect structures, to determine the	e result in the
	microstructure and influence the properties of metals and alloys.	
CO6	Develop learning skills and systematic understanding of	the crystal
	structure/property/ processing relationships of metals and alloys.	

Unit No.	Title of unit and Contents
Ι	Defects in Solids:
	Elastic and inelastic behaviour, Point defects: vacancies, interstitials, Schottky
	defects and Frenkel defects, non-stoichiometry. Line defects: edge and screw

	dislocations. Properties of dislocations, force on dislocation, energy of dislocation,	
	dislocation density, interaction between dislocations (cross-slip and climb), Frank-	
	Read source, plastic deformation, motion of dislocation, creep. Surface defects:	
	grain boundaries, stacking fault. Volume defect: twin boundary.	
II	Diffusion in Solids:	
	Mechanism of Diffusion, Fick's first law of diffusion, Fick's second law of diffusion,	
	solution to Fick's second law (error function), Atomic model of diffusion,	
	Applications based on the second law, experimental determination of D'corrosion	
	resistance of duralumin, decarburization of steel.	
III	Solid Solutions and metallurgical thermodynamics	
	Solid solubility: types of solid solutions, factors governing solid solubility (Hume -	
	Rothery rule), atomic size in solid solutions, size factor, Laws of thermodynamics,	
	Auxiliary thermodynamic functions, Measurement of changes in enthalpy and	
	entropy, Richard's rule, Trouton's rule, Chemical reaction equilibrium,	
	Thermodynamic properties of solutions	
IV	Phase diagrams:	
	Gibb's phase rule: proof, explanation and application to single (mono) component	
	(H ₂ O) and binary phase diagram, Thermodynamic origin of phase diagrams, Lever	
	rule, types of phase diagrams (examples of eutectic, peritectic, monotectic, eutectoid,	
	peritectoid, syntactic reaction). Experimental determination of phase diagrams.	

- 1. Elements of Materials Science and Engineering (5th edition), Lawrence H. Van Vlack, Addison-Wesley Publishing Co. ISBN: 0-201-08089-3
- 2. Materials Science and Engineering A First Course (5th edition), V. Raghvan. PHI Learning Pvt. Ltd, New Delhi, ISBN: 978-81-203-2455-8
- 3. Physical Metallurgy (Part I) R. W. Cahn and P. Hassen, North Holland Physics Publishing, New York.
- 4. Materials Science, G. K. Narula, K. S. Narula and V. K. Gupta, Tata Mc-Graw Hill Publishing Co. Ltd, New Delhi, ISNN: 0-07-451796-1
- 5. Materials Science and Metallurgy for Engineers, V. D. Kodgire and S. V. Kodgire, Everest Publishing House, ISBN: 81-86314-008
- 6. Introduction to Materials science for engineers (6th edition)-J. F. Shaekelford and M. K. Murlidhara- Pearson Education.
- 7. Experiments in Materials Science Prof. E. C. Subbarao. et.al.
- 8. Experiments in Materials Science V. Raghavan.

Title of the		Credits : 04
Course and	Thin Film Physics (PHY-554)	Hours : 60
Course Code		
Course Outcomes (COs)		
On completion of the course, the students will be able to:		
CO1	Describe thin film thickness measurement techniques.	
CO2	Explain theories of thin film growth.	
CO3	Illustrate different theoretical models to study properties of thin film	S.
CO4	CO4 Compare and contrast bulk properties with thin film properties of materials.	

CO5	Test different properties of thin films.
CO6	Write a report on development of thin film sensors and devices.

Unit. No.	Title of Unit and Contents
Ι	Thin Film Thickness Measurement:
	Introduction to thin films
	Introduction: brief discussion of the bulk and the thin film properties,
	Thickness Measurement Techniques: Tolansky technique, Talystep (stylus) method,
	Quartz crystal microbalance, Stress measurement by optical method, Gravimetric
	method.
II	Theories and models of thin film growth:
	Theories of thin film nucleation: Impingement, adsorption and thermal
	accommodation, the Capillarity model, the Atomistic models, structural consequences
	of thin film nucleation, the four stages of film growth, the incorporation of defects
	during growth.
III	Properties of thin films:
	Electrical Properties: Source of Resistivity in Metallic conductors, Influence of
	thickness on the resistivity of thin films, Hall Effect & Magnetoresistance in thin films,
	TCR and its effects. Mechanical properties: Adhesion & its measurement with
	mechanical and nucleation methods, stress measurement by using optical method.
	Optical properties: Properties of optical film materials, thin film optics, multilayer
	optical film applications.
	Antireflection coatings, multilayer films, interference filters, polarizers.
IV	Emerging Thin Film Materials and Applications:
	Patterning techniques (Photolithography), Diamond Films, Thin film resistors,
	capacitors, Junction devices (Diodes, Transistors, Solar cells), ICs, Thin film sensors
	(gas and humidity), Thin films for information storage (Magnetic and optical
	recording), Metallurgical applications, Photo thermal converters, Optical coatings.

- 1. Handbook of Thin Film Technology: L. I. Maissel and R. Glang, Mc Graw Hill Book Co. 1970, 07-039742-2
- 2. Thin Film Phenomena: K. L. Chopra, Mc Graw Hill Book Co. 1969
- 3. Material Science of Thin Films: M. Ohring, Academic Press, 1992, ISBN: 0-12-524990-X
- 4. Thin Film Process: J. L. Vossen and Kern, Academic Press, 1978.

Title of the Course and Course Code	Practical - III: Physics Practical Laboratory-III (General Lab-II) (PHY-570)	Credits : 02
Course Outcomes (COs)		
On completion of the course, the students will be able to:		
CO1	Tabulate the appropriate experimental data accurately and keep syste of general laboratory experiments.	ematic record
CO2	Discuss the results, findings using the physical scientific framework experimental tools.	and learn
CO3	Interpret professional quality of textual and graphical presentations of	of laboratory

	data and computational results.
CO4	Analyze various experimental results by developing analytical abilities to address
	real applications.
CO5	Evaluate possible causes of discrepancy in practical experimental observations and
	results in comparison to theoretical results.
CO6	Develop the skills related to betterment in education and research.

Sr. No.	Title of the Experiment
1.	Determination of Band gap of Ge-semiconductor with variation of temperature by Four
	Probe method.
2.	Skin depth: Skin depth in Al using electromagnetic radiation.
3.	Gouy's Method: Measurement of magnetic susceptibility of MnSO4.
4.	Thermionic emission: To determine work function of Tungsten filament.
5.	Hall effect: To determine charge concentration, conductivity of Ge-semiconductor.
6.	Measurement of resistivity of Ge by Four Probe method at room Temperature
7.	G. M. Counter: Determination of end point energy of beta rays using GM counter.
8.	G. M. Counter: Determination of dead time of GM tube by Double source method.
9.	Solar cells: Study of Solar cell characteristics
10.	Hysteresis: Study of core losses in transformer
11.	Determination of Ionic Conductivity of NaCl
12.	To study absorption spectra of Iodine molecule and to determine its dissociation
	Energy using spectrometer.

Title of the Course and Course Code	Practical-IV: Physics Practical Laboratory-IV (Electronics Lab) (PHY-571)Credits: 02
	Course Outcomes (COs)
On completion of the course, the students will be able to:	
CO1	Define the objectives of a given electronics-based experiments.
CO2	Interpret the appropriate tests of measuring equipment for an experiment.
CO3	Demonstrate proper use of circuit connections of desired experiment.
CO4	Analyse the electrical/ electronic parameters of a given instrument and the obtained
	results.
CO5	Review the observations taken during the experimentation and tabulate the results.
CO6	Design and construct the electronic circuit and build-up required instrumentations

Sr. No.	Title of the Experiment
1.	Diode Pump Staircase generator using UJT
2.	Fold back Power Supply
4.	Crystal Oscillator & Digital Clock
5.	Voltage Control Oscillator using IC-566
6.	Function generator using IC -8038
7.	Opto-coupler using OPAMPs and IC MCT-2E
8.	Constant current source using OP-AMP
9.	Digital to Analogue Converter (DAC) using R-2R and Binary ladder
10.	Active filters using OP-AMP / IC- 8038(Low pass, High pass, Notch type)

11.	Study of Multiplexer & De-multiplexer
12.	Lock-in-amplifier and measurement of low resistance & mutual inductance
13.	Analog to digital converter (ADC)
14.	IC555-Monosatable and Astable Multivibrator
15.	OPAMP as logarithmic amplifier