Deccan Education Society’s
FERGUSSON COLLEGE (AUTONOMOUS),
PUNE

Syllabus
for

M. Sc.(Electronic Science) Part II
(Semester-III and Semester-IV)
[Pattern 2019]

from Academic Year
2020-21
Program Structure of M.Sc. (Electronic Science) Part-II

<table>
<thead>
<tr>
<th>Particulars</th>
<th>Paper</th>
<th>Paper code</th>
<th>Title of Paper</th>
<th>Type of Paper</th>
<th>No. of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Sc. Semester-III</td>
<td>Paper-1</td>
<td>ELS5301</td>
<td>Electronic Communication</td>
<td>CORE-1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Paper-2</td>
<td>ELS5302</td>
<td>Embedded System Design with ARM</td>
<td>CORE-2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Paper-3</td>
<td>ELS5303</td>
<td>Data Communication and WSN</td>
<td>CORE-3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Paper-4</td>
<td>ELS5304</td>
<td>Internet of Things</td>
<td>Elective-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ELS5305</td>
<td>Operating System and Real Time Operating System</td>
<td>Elective-2 MOOCs</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ELS5306</td>
<td>Machine Learning and Artificial Intelligence</td>
<td>MOOCs</td>
<td></td>
</tr>
<tr>
<td>M.Sc. Semester-IV</td>
<td>Paper-5</td>
<td>ELS5307</td>
<td>Practical-V</td>
<td>MOOCs</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Paper-6</td>
<td>ELS5308</td>
<td>Practical-VI</td>
<td>MOOCs</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Paper-1</td>
<td>ELS5401</td>
<td>Electronic Science Project</td>
<td>MOOCs</td>
<td>8*</td>
</tr>
</tbody>
</table>

*One Project credit is equivalent to minimum 5-6 hours (for 8 Credits 40 – 48 Hours per week)

MOOC courses

<table>
<thead>
<tr>
<th>Course-1</th>
<th>ELS-01</th>
<th>IC Technology</th>
<th>MOOCs</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course-2</td>
<td>ELS-02</td>
<td>CMOS Analog VLSI Design</td>
<td>MOOCs</td>
<td>4</td>
</tr>
<tr>
<td>Course-3</td>
<td>ELS-03</td>
<td>Introduction to Machine Learning</td>
<td>MOOCs</td>
<td>4</td>
</tr>
<tr>
<td>Course-4</td>
<td>ELS-04</td>
<td>Advances Linear Continuous Control System: Application with MATLAB Programming and Simulink</td>
<td>MOOCs</td>
<td>4</td>
</tr>
<tr>
<td>Course-5</td>
<td>ELS-05</td>
<td>Mechatronics and Manufacturing Automation</td>
<td>MOOCs</td>
<td>4</td>
</tr>
</tbody>
</table>

Note: Students offering less than 12 theory papers i.e. (48 credits) in previous semester can opt for the following MOOCs courses.
Guidelines for ELS5401: Electronic Science Project [8 credits]

Student need to select **project and internship** in industry/R and D Institutes.

1. 25% weightage is given for Internship/Entrepreneurial activities and 75% weightage for Project course work.
2. It is expected to spend 5-6 hours per credit i.e. for 8 Credits project course 40 – 48 Hours per week.
3. Therefore, a full-time intern is expected to spend 40 - 48 hours per week on Internship with Project work.
4. Weekly reporting of the progress of work should be done to the Faculty Mentor of the department.
5. **Internship** [50 marks] + **Project work** [150 marks] = 200 marks

Skill Component Courses – (for 1 Credit each)

1. **Mastering C language** – for scientific computations, file and database handling, real-world interfacing and graphics programming
2. **Introduction to HDL programming (VHDL/Verilog)**
3. **Matlab Programming and Simulink**: A Practical Introduction to Matlab Programming and Simulink.
4. **LabVIEW**: Introduction to LabVIEW.
5. **PLC/SCADA**: Introduction to PLC/SCADA with hands-on.
6. **Open source hardware platform** (like Arduino, Raspberry pi, Beagle Bone etc.)
7. Any other equivalent skill component course.
Course Outcomes
After learning this course student will be able to
CO1 Analyse basic concept of communication system, types of noise affecting communication system and noise parameters and Radio Wave propagation.
CO2 Integrate various Modulation and Demodulation Techniques and the various radio receivers with their parameters.
CO3 Design basic digital communication systems to solve a given communications problem.
CO4 Understand Fibre Optic Techniques

<table>
<thead>
<tr>
<th>Unit I</th>
<th>Introduction to communication systems and Radio Wave propagation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Propagation of waves: Ground waves, sky-wave propagation, ionosphere, space waves, tropospheric scatter propagation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit II</th>
<th>Modulation and Demodulation Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amplitude Modulation: Frequency spectrum of the AM wave, representation of AM, Power relations in the AM wave. Generation of AM- Basic requirements, types of AM generation.</td>
</tr>
<tr>
<td></td>
<td>Single Sideband Techniques: Suppression of carrier (DSBSC), Suppression of unwanted side bands (SSB) and Extensions of SSB.</td>
</tr>
<tr>
<td></td>
<td>Angle modulation: Frequency and Phase modulation theory, pre-emphasis and de-emphasis, comparison of wideband and narrowband FM. Generation of FM-Direct methods, Indirect method.</td>
</tr>
<tr>
<td></td>
<td>Radio Receivers: Tuned radio frequency receiver, superhetrodyne receiver, AM receivers, and FM receivers, demodulation of SSB.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit III</th>
<th>Digital Transmission Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Multiplexing TDM, FDM and WDM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit IV</th>
<th>Introduction to Fiber Optic Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction to light, optical fiber, optical components, fiber connections and splices, fiber cabling and construction and optical networking.</td>
</tr>
</tbody>
</table>

Reference Books:
2. George Kennedy and Bernard Davis, Electronic Communication Systems, TMH.
3. Dennis Roddy and John Coolen, Electronic communications, Pearson.
4. Gary M. Miller, Modern electronic communication, 9th edition, PHI
Course Outcomes

After learning this course student will be able to

- **CO1** Analyse the features of embedded systems, architecture of ARM7, instruction set, development tools and its applications.
- **CO2** Explore the architectural features of LPC2148 microcontrollers along with the hardware and interfacing peripheral devices.
- **CO3** Design real time embedded system
- **CO4** Test the real-time operating system.

Unit I

ARM Embedded System
- RISC and ARM Design Philosophy, Embedded System Hardware and Software, ARM7 CPU Core, Processor Architecture (32-bit), ARM Programmer's Model, ARM Development Tools, Introduction to ARM families, ARM7TDMI Features, Pipelining, Exceptions, Interrupt Vector Table, ARM Instruction Set, Thumb Instruction, programming in assembly language.
- System Peripherals: Bus Structure, Memory Map, Register Programming

Unit II

ARM7 Based Microcontroller LPC2148
- Features, architecture (block diagram and its description), system control block (PLL and VPB divider), memory map, GPIO, pin connect block, timer, interfacing with LED, LCD, GLCD, and KEYPAD.GSM and GPS using UART, on-chip ADC using interrupt (VIC), EEPROM using I2C, SDCARD using SPI, on-chip DAC for waveform generation

Unit III

Introduction to Operating Systems and RTOS
- Operating system basics and types of operating systems, the BIOS and Boot Process: BIOS Actions, Operating System, Boot Process, Memory Management: segmentation and paging, Memories- virtual, cache etc.
- **Real time Systems Concepts:**
 - Foreground / background systems, critical section of code, resources, shared resources, task, process and threads, multiprocessing and multitasking, task scheduling. IPC mechanism shared memory, context switches (or task switches), kernels schedulers, preemptive and non-preemptive kernels, reentrant functions, round-robin scheduling, priorities (task, static, dynamic), priority inversions, deadlock, semaphores, inter task communication, message mailboxes, message queues, interrupt, clock tick, real time system, issues in real time computing, structure of a real time system, hard real time system vs. Soft real time system, advantage and disadvantages of real-time kernels

Unit IV

Real time operating system
- **Kernel structure:** critical sections, task control blocks, task level context switch.
- **Task Management:** creating a task, task stacks, stack checking, deleting a task, suspending a task, resume a task.
- **Semaphore Management:** creating and deleting a semaphore, waiting on a semaphore, creating a Mutex, deleting Mutex, waiting on Mutex.
- Message Mailbox Management: creating a mailbox, deleting mailbox, waiting for a message at a mailbox porting an operating system like µC/OS II / RTLinux / FreeRTOS or any other equivalent on an Embedded Platform
Reference Books:
3. The insider,’s guide to the PHILIPS ARM7 based Microcontrollers, An Engineer Introduction
4. LPC 214x User manual (UM10139) :- www.nxp.com
5. M. Naghibzadeh, Operating System Concepts and Techniques
6. Galvin, Operating Systems Concept, John Willey and Sons
7. Achyut Godbole, Operating Systems, TMH
8. Jean J. Labrosse, MicroC/OS-II The Real-Time Kernel, Elsevier
Course Outcomes

After learning the course student will be able to
CO1 Use of computer networking in various walks of life, describe the types of networks, network configurations and network topologies.
CO2 Analyse the responsibilities of data link layer.
CO3 List types of networking devices, backbone networks and Internet Protocol (IP) addressing.
CO4 Introduction to the concept of wireless sensor networks with applications.

Unit I
Introduction:

Unit II

Unit III
Connecting LANs, Backbone and Virtual LANs: Connecting devices, Backbone Networks, Virtual LANs. Network Layer: Need, Logical addressing, Ipv4 addresses, Ipv6 addresses, Ipv4 and Ipv6 datagrams, Transition from Ipv4 to Ipv6 Network Layer: Delivery, Forwarding, Types of Routing protocols, Unicast Routing Protocols, The Transport Layer: Process to process Delivery, User Datagram Protocol (UDP) and TCP. Application layer: Domain name space, Distribution of name space, Resolution.

Unit IV
Overview Of Wireless Sensor Networks & Architectures
Reference Books:

Online references: (NPTEL/ MOOC)
1. Link:1: http://nptel.ac.in/courses/106105081.
2. Link:2: http://nptel.ac.in/courses/106105082.
3. Link:3: https://nptel.ac.in/courses/106/105/106105160/
4. Link: 4: https://www.netacad.com/courses/networking
Course Outcomes

After learning this course student will be able to

- CO1 Categorize IoT system including basic design strategy, process modelling and building small low cost embedded IoT system
- CO2 Explore fundamentals of security and implement secure infrastructure for IoT
- CO3 Analyse real world application scenarios of IoT with different case studies.
- CO4 Use Python Programming in IoT development.

<table>
<thead>
<tr>
<th>Unit I</th>
<th>Introduction to Internet of Things</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Unit II</th>
<th>IoT Physical Devices and Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basic building blocks of an IoT device, horizontal and verticals of IoT applications, four pillars of IoT, M2M: The internet of devices, RFID: The internet of objects, WSN: The internet of transducer, SCADA: Choosing platform for IoT development, Choosing IoT hardware processor (Arduino, Raspberry Pi etc.), IoT and M2M, SDN and NFV for IoT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit III</th>
<th>IoT Systems – Logical Design using Python</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction to Python, Installing Python, Python Data Types and data structures, control flow, Functions, Modules, Packages, Object oriented programming, Classes, File handling, Date/Time operations, Python Packages of interest for IoT, GUI programming for IoT, Python programming for interfacing of different processors.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit IV</th>
<th>IoT Protocols, Security and Web/ Cloud of Things</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IoT protocols, Protocol Standardization for IoT, Issues with IoT Standardization, Unified Data Standards, Protocols- IEEE 802.15.4, BACNet Protocol, Modbus</td>
</tr>
<tr>
<td></td>
<td>IoT Security: Vulnerabilities of IoT, Security Requirements, Challenges for Secure IoT, Threat Modeling, Key elements of IoT Security</td>
</tr>
<tr>
<td></td>
<td>Web of Things versus Internet of Things, Two Pillars of the Web, Architecture Standardization for WoT,</td>
</tr>
</tbody>
</table>
Reference Books:

7. Olivier Hersent, Omar Elloumi and David Boswarthick, —The Internet of Things: Applications to the Smart Grid and Building Automation, Wiley, 2012, 9781119958345
ELS5307: Electronic Science Practical Course – V

[Credit-4]

Any 12 Practical (+)

Title of Experiment

I. **Electronic Communication**
 1. Design of AM transmitter
 2. Design of FM transmitter
 3. Delta modulation and demodulation
 4. Design PCM encoder and decoder system
 5. Design of ASK / FSK transmitter and receiver
 6. Time division Multiplexing/FDM
 7. Varactor diode characteristics and its application in FM
 8. Phase Shift Keying (BPSK/QPSK)
 9. BPSK Modulation and Demodulation

II. **Data Communication and WSN**
 1. Study of line Coding
 2. Study line coding and Decoding
 3. Different physical equipment for networking.
 4. Different internetworking devices in a computer network.
 5. Basic Networking Commands.
 6. Extracting MAC address using Python.
 7. Mobile Ad hoc Network (MANET).

III. **Programmable Logic Controllers and Applications**
 1. PLC Program to Control Traffic Lights
 2. PLC Program to Count and Pack Parts from Conveyor
 3. PLC Program to Maintain Level of a Tank
 4. Relay programming (all logic gates, Boolean equation like multiplexer, demultiplexer, encoder, decoder, latch etc.)
 5. Conveyor belt control

Note: Any other equivalent practical
Any 12 Practical

Title of Experiment

I. Embedded System Design with ARM
 1. Basic Assembly level Programmes
 2. Interfacing Alphanumeric LCD to 16/32 bit microcontroller
 3. Interfacing LPC2148 to LCD/GLCD
 4. Interfacing key board to 16/32 bit microcontroller
 5. Programming ADC of 16/32 bit microcontroller
 6. Programming DAC of 16/32 bit microcontroller
 7. Interfacing external interrupt.
 8. Programming RTC / EEPROM / I2C of 16/32 bit microcontroller
 9. Programming UART of 16/32 bit microcontroller
 10. Interfacing SD card to LPC2148
 11. Interfacing EEPROM to LPC2148 using I2C protocol
 12. Multi-tasking/Semaphores/Mutex/Message/Queues using uC/OS-II

II. Internet of Things
 1. Python programs using list, tuples, dictionaries, sets etc.
 2. Python programming using functions, modules, packages, Object oriented programming and file handling in Python.

 Experiments using Arduino/Raspberry Pi or equivalent board:
 3. Python programming for hardware interfacing (Arduino, Raspberry-Pi boards etc.).
 Interface LED/Buzzer and write a program to turn ON/OFF LED/Buzzer.
 4. Interface Push button/Digital Sensor (IR/LDR)
 5. Interface DHT 11 with Arduino/Raspberry Pi and write a program to display Temperature and Humidity on display device
 6. Interface motor using relay with Arduino/Raspberry Pi and write a program to turn on motor when push button is pressed or at a sensor detection.
 7. Interface Bluetooth with Arduino/Raspberry Pi and write a program to send sensor data to smartphone using Bluetooth.
 8. Interface Bluetooth with Arduino/Raspberry Pi and write a program to turn LED ON/OFF when “1” or “0” is received from smart phone using Bluetooth.
 9. Upload Temperature/ Humidity data on Thing speak etc. cloud. Retrieve temperature/humidity data from Thing speak or any cloud.
 10. Installation of MySQL on Raspberry Pi and perform basic SQL queries.
 11. Program Arduino/Raspberry Pi to publish temperature data to MQTT broker.
 Program Arduino/Raspberry Pi to subscribe to MQTT broker for temperature data and print it.
 12. Program Arduino/Raspberry Pi to create TCP server on it and respond with temperature/humidity (any sensor data) data to TCP client when requested.
 Program Arduino/Raspberry Pi to create UDP server on it and respond with temperature/humidity (any sensor data) data to UDP client when requested.

Note: Any other equivalent practical