

Fergusson College (Autonomous) Pune

Learning Outcomes-Based Curriculum for F. Y. B. Sc. Mathematics With effect from June 2019

Programme learning outcomes

PO1	Formulating the problem
PO2	Applying the knowledge to solve the problem
PO3	Presenting the solution
PO4	Generalization of the problem
PO5	Special cases of the problem

Programme Structure

Year	Course Code	Course Title	Credits
1	MTS1101	Calculus-I	2
	MTS1102	Algebra	2
	MTS1103	Mathematics Practical-I	2
	MTS1201	Calculus-II	2
	MTS1202	Geometry	
	MTS1203	Mathematics Practical-II	2

Year	Course Code	Course Title	Credits
2	MTS2301	Multivariable Differential Calculus	2
	MTS2302	Linear Algebra	2
	MTS2303	Numerical Analysis – I	2
	MTS2304	Discrete Mathematics – I	2
	MTS2305	Operations Research	2
	MTS2401	Multivariable Integral Calculus	2
	MTS2402	Ordinary Differential Equations	2
	MTS2403	Numerical Analysis – II	2
	MTS2404	Discrete Mathematics	2
	MTS2405	Optimization Techniques	2

Year	Course Code	Course Title	Credits
3	MTS3501	Metric Spaces	3
	MTS3502	Real Analysis - I	3
	MTS3503	Mathematics Problem Course - I	3
	MTS 3504	Group Theory	3
	MTS 3505	Advanced Linear Algebra	3
	MTS 3506	Mathematics Problem Course - II	3
	MTS3507	Laplace and Fourier Transforms	2
	MTS3508	Number Theory	2
	MTS3509	C – Programming - I	2
	MTS3510	Dynamical Systems	2
	MTS3511	Financial Mathematics - I	2
	MTS3512	Lattice Theory	2
	MTS3521	Mathematics Practical - I	2
	MTS3601	Complex Analysis	3
	MTS3602	Real Analysis - II	3
	MTS3603	Mathematics Problem Course - III	3
	MTS3604	Ring Theory	3
	MTS3605	Differential Geometry	3
	MTS3606	Mathematics Problem Course - IV	3
	MTS3607	Partial Differential Equations	2
	MTS3608	Computational Geometry	2
	MTS3609	C-Programming - II	2
	MTS3610	Lebesgue Integration	2
	MTS3611	Financial Mathematics - II	2
	MTS3612	Graph Theory	2
	MTS3621	Mathematics Practical - II	2

Paper: MTS 1101 Calculus-I Credits: 2

Learning Outcomes	Suggested Pedagogical Processes
To learn basic concepts related to Real	Blackboard
Numbers and their properties	
To understand inequalities	Use of open source softwares
To learn the definition of convergence as	Use of projector
applied to sequences	
To learn various results and definitions	Seminar/Discussion/presentation
related to Real Sequences and their	by students
convergence.	
Apply these results to understand series of	Special lectures by students
real numbers	

Unit No	Title of Unit and Contents
Unit NO.	
I	Real Numbers: Algebraic and Order properties of Real numbers, Solution
	set of inequalities, Geometric Mean-Arithmetic Mean inequality, Bernoulli's
	inequality, Absolute Value of real numbers, Triangle inequality and its
applications. Bounded set, Supremum (1 u b). Infimum (g 1 b).	
	Completeness property of real numbers. Archimedean property of R. Density
	of rational numbers in R, Intervals of real line, nested interval property
	(statement only).
II	Sequences of Real Numbers: Definition of a sequence, Limit of a sequence,
	Uniqueness of limit, Bounded sequence, Tail of a sequence, Algebra of
	limits of sequences, Squeeze theorem for sequences, Ratio test for
sequences, Monotone sequences, Monotone sequences, Diversional (statement only), Bolzano	sequences, Monotone sequence, Monotone convergence theorem (Statement
	only), Subsequences, Divergence Criteria, Monotone subsequence theorem
	(statement only), Bolzano-Weierstrass theorem (statement only), Cauchy
	sequence (definition and examples only).
III	Series of Real Numbers: Definition, Sequence of partial sums, Convergent
	series and Divergent series, n-th tem test, Ratio test and root tests for
	convergence of series (statements and examples only).

Learning Resources

Textbooks:

- 1. Robert G. Bartle, Donald R. Sherbert, Introduction to Real Analysis: John Wiley & Sons, Fourth Edition, 2011.
- 2. Tom M. Apostol Calculus Volume-I, Wiley International Edition, 2007.
- 3. M. Spivak, Calculus, Cambridge, 2006.
- 4. J. Stewart, Calculus, Cengage Learning, 2012.
- 5. G.B. Thomas, R. Finney, Calculus and Analytic Geometry, Addison-Wesley, 1995. Suggested Reading:
 - 1. Who Gave You the Epsilon? Cauchy and the Origins of Rigorous Calculus Judith V. GrabinerThe American Mathematical Monthly, March 1983, Volume 90, Number 3, pp. 185–194.

MTS 1102/MTA 1102Algebra Credits: 2

•	cuits. 2
Learning Outcomes	Suggested Pedagogical Processes
To formulate induction problems	Blackboard
Solution of induction problems	Use of open source softwares
Understand the results of Set theory which	Use of projector
are used to study relations, functions and	
natural numbers. Equivalence of sets	
introduce the concept of finite/infinite sets.	
Understand the results in complex numbers	Seminar/Discussion/presentation
which are introduced as the algebraic set of	by students
order pairs.	
To solve polynomial equations	Special lectures by students
To understand similarity between	
polynomials and integers	

Unit No.	Title of Unit and Contents		
Ι	Principle of Mathematical Induction: Well ordering principle for N, Principle		
	of Mathematical induction, Strong form of Principle of Mathematical		
	induction.		
II	Sets, Relation and Functions:		
	• Power set, Operation on sets, Cartesian product of sets		
	• Definition of function, Domain, co-domain and the range of function,		
	injective, surjective and bijective functions, composite function,		
	invertible function		
	• Definition of relation, equivalence relation, equivalence classes,		
	Definition of partition, every partition gives an equivalence relation		
	and vice-versa.		
III	Complex Numbers:		
	 Addition and multiplication of complex numbers, Modulus and 		
	amplitude of a complex number, Real and imaginary parts and		
	conjugate of a complex number.		
	• Geometric representation sum, differences, product and quotient of		
	two complex numbers as well as modulus, amplitude and the		
	conjugate of a complex number.		
	 De-Moivre'sTheorem, roots of unity, Euler's Formula. 		
IV	Polynomials:		
	• The set Q[x] of polynomials in one variable with rational		
	coefficients.		
	• Division Algorithm (without proof). G.C.D of two		
	polynomials(without proof).		
	• Remainder Theorem, Factor Theorem (with proof).		
	• Relation between the roots and the coefficients of a polynomial.		

Learning Resources

Include Reference Books/ e-resources/ journals/any other learning material
1.Barbeau, Edward J, Polynomials, Springer, 1989
2. Brown and Churchill, Complex Variables and Applications, 7th Edition, McGraw Hill, 2010.

MTS 1201/MTA1201 Calculus-II 2

Crod	lite.	1
CIEU	uts.	4

Learning Outcomes	Suggested Pedagogical Processes
Limit using sequences	Blackboard
sequential continuity	Use of open source softwares
Hard theorems and their importance	Use of projector
Differentiable functions	Seminar/Discussion/presentation
	by students
Applications of mean value theorems	Special lectures by students

Unit No.	Title of Unit and Contents	
Ι	Limits of functions: Cluster point, Definition of limit, Limits of some	
	standard functions, Sequential criteria for limits, Uniqueness of limit,	
	Divergence criteria, Algebra of limits, Squeeze theorem for limit.	
II	Continuous functions: Definition, Sequential criteria and examples,	
	Composition of continuous functions, Continuous functions on intervals,	
	Boundedness theorem (statement only), Maximum-Minimum theorem	
	(statement only), Location of roots theorem (statement only), Intermediate	
	value theorem, Fixed point theorem, Preservation of intervals theorem.	
III	Derivative: Definition, Differentiability imply continuity, Non differentiable	
	functions, Algebra of differentiable functions, Caratheodory's theorem,	
	Chain rule for derivative of composite function, Derivative of inverse function.	
IV	Mean value theorems: Vanishing of the derivative at interior extremum,	
	Rolle's Theorem, Lagrange's mean value theorem, Cauchy's mean value	
	theorem, Applications of mean value theorems to geometric properties of	
	functions, First derivative test for extrema, Second derivative test for	
extrema, Derivative test for convexity, Intermediate value property for derivative, Darboux's theorem.		
		V
	Leibnitz's theorem for n^{th} derivative, Applications of Leibnitz's	
	theorem. Indeterminate forms, L'Hospital's Rule, Taylor's theorem,	
	Maclaurin's theorem, Applications of Taylor's Theorem.	

Learning Resources

Textbooks:

- 1. Robert G. Bartle, Donald R. Sherbert, Introduction to Real Analysis: John Wiley & Sons, Fourth Edition, 2011.
- 2. Tom M. Apostol Calculus Volume-I, Wiley International Edition, 2007.
- 3. M. Spivak, Calculus, Cambridge, 2006.
- 4. J. Stewart, Calculus, Cengage Learning, 2012.
- 5. G.B. Thomas, R. Finney, Calculus and Analytic Geometry, Addison-Wesley, 1995.

MTS 1202/MTA1202Geometry Credits: 2

	Teuris. 2
Learning Outcomes	Suggested Pedagogical Processes
Locus of points	Blackboard
Similarity and differences between equation	Use of open source softwares
of line in 2D and 3D Geometry	
Similarity and differences between circle	Use of projector
and sphere	
Invariants	Seminar/Discussion/presentation
	by students
Relation between Geometry and Algebra	Special lectures by students

Unit No.	Title of Unit and Contents
Ι	Analytical geometry of two dimensions:
	Locus of points
	• Change of Axes: Translation of Axis and Rotation of axes.
	• Removal of <i>xy</i> term and linear terms
	• General Equation of second degree in <i>x</i> and <i>y</i> .
	Centre of Conic
	• Reduction to Standard form: length of Axes, equation of axes, Co-
	ordinates of foci, Eccentricity, vertex
	Equation of directrix and latus rectum
II	Planes in Three Dimension
	Rectangular Cartesian co-ordinates of a point in Plane
	Orientation of Axes
	• Co-ordinates of a point.
	 Direction Angles, Direction Ratios, Direction Cosines.
	 Direction ratios of a line joining two points
	 Relation between direction ratios and direction cosines.
	• Angle between two lines.
	General Equation of first degree.
	• Normal form of the equation of a plane.
	• Transform to the normal form.
	Angle between two planes
	• Determination of a plane under given conditions.
	• Plane passing through a given points.
	• Plane passing through three points.
	• System of planes
	• Two sides of planes.
	• Length of the perpendicular from a point to a plane.
	Bisectors of angles between two planes
	• Joint equation of two planes
III	Lines in Three Dimensions
	• Equation of line.
	• Symmetrical form of the equation of a line.
	• Equation of a line passing through two points

	• Transformation of the equation of a line from the asymmetric form to the symmetric form.
	• Angle between a line and plane.
	• Coplanar lines: Condition for a line to lie in a plane, condition for two lines to be coplanar.
	• Sets of condition which determines a line: Number of arbitrary
	constants in the equations of a straight line, Sets of conditions which determine line.
	• Skew lines and shortest distance: To find the length and the equation
	of the line of shortest distance between two lines.
	• Length of the perpendicular from a point to a line.
IV	Sphere
	• Equation of a sphere, sphere with a given diameter, Intercept form,
	• Equation of the sphere through four points.
	• Plane section of a sphere.
	• Intersection of two spheres.
	• Sphere through a given circle.
	• Sphere passing through the circle intersection of the given sphere and plane.
	• Sphere passing through a circle which is the intersection of two spheres
	• Intersection of a sphere and a line.
	• Equation of Tangent plane: Standard equation of sphere. Equation of tangent plane, The condition of tangency.

Learning Resources

Include Reference Books/ e-resources/ journals/any other learning material

- 1. Shantinarayan: Analytical Solid Geometry, S. Chand and Company Ltd, New Delhi, 1998.
- 2. P.K.Jain and Khalil Ahmad, A Text Book of Analytical Geometry of Three Dimensions, Wiley Estern Ltd. 1999.
- 3. Askwyth, E. H: The Analytical Geometry of the Conic Sections.

MTA 1103Mathematics Practical 1 Credits:2

Learning Outcomes	Suggested Pedagogical Processes
Problem solving ability	Blackboard
Understanding concepts of Algebra	Use of open source softwares
Understanding concepts of Calculus	Use of projector
	Seminar/Discussion/presentation
	by students
	Special lectures by students

Unit No.	Title of Unit and Contents
Ι	Different Methods of Proofs:
	Proof by Induction
	Proof by contradiction
II	Sets, Relations and Functions:
	• Examples of bijections between N and Z
	Equivalence relations on Integers
	Miscellaneous problems
III	Integers
	• Division algorithm and GCD
	Congruence modulo m
IV	Cardan's method
V	Ferrari's method
VI	Real Numbers and properties
VII	Sequences of real numbers
VIII	Problems on convergent sequences
IX	Series of real numbers
Х	Different tests for convergence of series

Learning Resources

MTS 1203Mathematics Practical II Credits: 2

Learning Outcomes	Suggested Pedagogical Processes
Problem solving ability	Blackboard
Understanding concepts of Algebra	Use of open source softwares
Understanding concepts of Calculus	Use of projector
	Seminar/Discussion/presentation
	by students
	Special lectures by students

Unit No.	Title of Unit and Contents
Ι	Numerical Methods:
	Bisection method
	Newton -Raphson method
	• Simson's 1/3 and 3/8 rule
Π	System of Linear Equations:
	Gaussian Elimination
	• Cramer's rule
III	Line and Plane
IV	Sphere
V	Continuous functions
VI	L'Hospital rule
VII	Successive Differentiation
VIII	Taylor's theorem

Financial Mathematics-I (MTA1103) Credits: 2

Learning Outcomes	Suggested Pedagogical Processes
To equip students with basic Mathematical	Blackboard
tools.	
To develop the skill of using mathematics in	Use of open source softwares
other subject.	
To increase the problem solving ability	Use of projector
	Seminar/Discussion/presentation
	by students
To develop the mathematics base needed for	Special lectures by students
other subjects	

Unit No.	Title of Unit and Contents
Ι	Quantitative Concepts:
	What is interest? Simple and Compound interest, Nominal and Effective rate
	of interest, Concept and Calculations of Equated Monthly Instalments EMI,
	Time, Present and Future Value of Money, Applications of Time Value of
	Money, Impact of time and discount rate on present and future values,
	Relationship between net present value and financial investment, Applications
	of time value of money.
II	The Matrix Algebra:
	The role of linear algebra, Definitions, addition and subtraction of matrices,
	scalar multiplication, vector multiplication, multiplication of matrices,
	commutative, associative and distributive laws in matrix algebra, Identity and
	Null matrices, matrix expression of a system of linear equations, row
	operations, augmented matrix, Gaussian method of solving linear equations.
III	Basic Concepts in Calculus:
	Exponents, Polynomials, Factoring, Completing the square, Functions,
	Graphs, Slopes and Intercepts, Graphs of Non-linear Functions, Exponential
	and logarithmic functions, properties of exponents and logarithms, natural
	exponential and logarithmic functions, solving natural exponential and
	logarithmic functions

Learning Resources

- 1. Edward Dowling, Introduction to Mathematical Economics, Schaum's Outline Series.
- 2. Frank Ayres, Mathematics of Finance, Schaum's Outline Series

Financial Mathematics-II (MTA1203) Credits: 2

Learning Outcomes	Suggested Pedagogical Processes
To develop the skill of using mathematics in	Blackboard
other subject.	
To increase the problem solving ability	Use of open source softwares
To develop the mathematics base needed for	Use of projector
other subjects	
	Seminar/Discussion/presentation
	by students
	Special lectures by students

Unit No.	Title of Unit and Contents
Ι	The Derivatives and the Rule of Differentiations
	Difference of the stope of curve linear functions, Derivative,
	Differentiability and Continuity, Rules of Differentiation, Higher order
	derivatives, Implicit Differentiation.
II	Use of Derivatives in Mathematics and Economics
	Increasing and Decreasing functions, Concavity and Convexity, Relative
	extrema, Inflection points, Curve Sketching, Optimization of Functions,
	Marginal concepts, Optimizing economic functions, Free elasticity of demand
	and supply, Relationship among total, Marginal and Average concepts.
III	Integral Calculus: The Indefinite Integral
	Integration, Rules of integration, Initial conditions and boundary conditions,
	Integration by substitution, Integration by parts, Economic applications

Learning Resources

- Edward Dowling, Introduction to Mathematical Economics, Schaum's Outline Series
 Frank Ayres, Mathematics of Finance, Schaum's Outline Series