

Deccan Education Society's

Fergusson College (Autonomous), Pune

Learning Outcomes-Based Curriculum

As per guidelines of

NEP 2020

for M. Sc. I - Biochemistry

With effect from Academic Year

2023-2024

Department of Chemistry, Fergusson College (Autonomous), Pune
[1]

	Program Outcomes (POs) for M. Sc. Programme			
PO1	Disciplinary Knowledge: Demonstrate comprehensive knowledge of the discipline that forms a part of a postgraduate programme. Execute strong theoretical and practical understanding generated from the specific programme in the area of work.			
PO2	Critical Thinking and Problem solving: Exhibit the skill of critical thinking and understand scientific texts and place scientific statements and themes in contexts and also evaluate them in terms of generic conventions. Identify the problem by observing the situation closely, take actions and apply lateral thinking and analytical skills to design the solutions.			
PO3	Social competence: Exhibit thoughts and ideas effectively in writing and orally; communicate with others using appropriate media, build effective interactive and presenting skills to meet global competencies. Elicit views of others, present complex information in a clear and concise and help reach conclusion in group settings.			
PO4	Research-related skills and Scientific temper: Infer scientific literature, build a sense of enquiry and be able to formulate, test, analyse, interpret and establish hypothesis and research questions; and to identify and consult relevant sources to find answers. Plan and write a research paper/project while emphasizing on academics and research ethics, scientific conduct and creating awareness about intellectual property rights and issues of plagiarism.			
PO5	Trans-disciplinary knowledge: Create new conceptual, theoretical and methodological understanding that integrates and transcends beyond discipline-specific approaches to address a common problem.			
PO6	Personal and professional competence : Perform independently and also collaboratively as a part of a team to meet defined objectives and carry out work across interdisciplinary fields. Execute interpersonal relationships, self- motivation and adaptability skills and commit to professional ethics.			
PO7	Effective Citizenship and Ethics: Demonstrate empathetic social concern and equity centred national development, and ability to act with an informed awareness of moral and ethical issues and commit to professional ethics and responsibility.			
PO8	Environment and Sustainability: Understand the impact of the scientific solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.			
PO9	Self-directed and Life-long learning: Acquire the ability to engage in independent and life-long learning in the broadest context of socio-technological changes.			

	Program Specific Outcomes (PSOs) for M. Sc. Biochemistry						
PSO No.	Program Specific Outcomes (PSOs) Upon completion of this programme the student will be able to						
PSO1	Academic Competence:						
	 (i) Articulate fundamental concepts, principles and processes underlying the field of biochemistry and its different branches (ranging from biomolecules, metabolism, nutrition, cell biology, genetics, enzymology, immunology, physiology, endocrinology, plant biochemistry, molecular biology to genetic engineering, neurochemistry) and its linkage with related disciplinary areas / subjects. (ii) Demonstrate an understanding and be able to explain a wide range of biochemical techniques (e.g. basic molecular biology, genetic engineering, microbiology methods, spectrophotometry, enzyme kinetics, chromatography, electrophoresis, immunological assays) 						
PSO2	Personal and Professional Competence						
	(i) Execute critical thinking and be capable in experimental data interpretation and carry out laboratory-oriented numerical calculations.						
	(ii) Identify biochemistry related problems and use appropriate concepts and methods to solve them.						
	(iii) Formulate scientific protocols, write authentic reports and develop effective presentation and conversational competence.						
PSO3	Research Competence						
	(i) Review scientific literature, develop a hypothesis and formulate scientific protocols and conduct appropriate experiments.						
	(ii) Plan and execute research projects professionally while emphasizing on academic and research ethics, scientific misconduct and creating awareness about intellectual property rights and issues of plagiarism						
	(iii) Integrate informatics and statistical skills to explore and authenticate biological data for experimental and research purpose						
PSO4	Entrepreneurial and Social competence						
	(i) Develop solutions and apply appropriate techniques towards specific areas related to biochemistry including industrial production, clinical, health, agriculture.						
	(ii) Execute social competence including listening, speaking, observational, effective						

Fergusson College (Autonomous), Pune Proposed First Year Curriculum as per NEP 2020 **Department of Chemistry M. Sc. Biochemistry**

Programme Structure: M. Sc.-I Biochemistry

Semester	Paper Code	Paper Title	Туре	Credits
Ι	CHB-501(Major I)	Biomolecules	Theory I	4
	CHB-502 (Major II)	Microbiology and Cell Biology	Theory II	4
	CHB-503(Elective) OR	Enzymology and Biophysical Techniques	Elective	4
	CHB-504 (Elective)	Clinical Nutrition and Food Technology		
	CHB-510 (RM)	Research Methodology	RM	4
	CHB-520 (Practical I)	Practical - I	Practical I	2
	CHB-521 (Practical II)	Practical - II	Practical II	2
		Total Semester Credits	20	20
II	CHB-551 (Major I)	Metabolism	Theory I	4
	CHB-552 (Major II)	Genetics and Membrane Biochemistry	Theory II	4
	CHB-553 (Elective) OR	Techniques in Characterization of Biomolecules	Elective	4
	CHB-554 (Elective)	Molecular Oncology & Animal Cell Culture		
	CHB-560 (OJT/FP)	On Job Training/ Field Project	OJT / FP	4
	CHB-570 (Practical I)	Practical III	Practical I	2
	CHB-571 (Practical II)	Practical IV	Practical II	2
		Total Semester Credits	20	I
		Total PG-I Credits	40	

Teaching and Evaluation (Only for FORMAL education courses)

Course	No. of Hours per	No. of Hours per	Maximum	CE	ESE
Credits	Semester	Week	Marks	40 %	60%
	Theory/Practical	Theory/Practical			
1	15 / 30	1 / 2	25	10	15
2	30 / 60	2 / 4	50	20	30
3	45 / 90	3/6	75	30	45
4	60 / 120	4 / 8	100	40	60

Eligibility: Graduates in Chemistry , Botany, Microbiology, Zoology, Life Science, Nanoscience, Nanotechnology, B-Pharm and Biotechnology

	F.Y. M.Sc. Semester I				
Title of the Course and	Biomolecules (CHB-501)	Number of Credits: 04			
Course Code		Numbers of			
	Course Outcome (COs)	lectures: 60			
	On completion of the course, the students will be able to:				
CO1	Recall sources, structures and list the significance of biomolecule	es.			
CO2 Classify biomolecules with suitable examples and differentiate between their		etween their			
	features.				
CO3	Apply the knowledge of membrane composition to correlate with its properties and different types of transport mechanisms.				
CO4					
CO5	CO5 Evaluate in-vitro and in-vivo reactions of biomolecules along with their significance.				
CO6					

Unit No.	Title of Unit and Contents			
Ι	Introduction			
	1.1 Biological Significance, Classification with examples.			
	Basic structures of Monosaccharides-Cyclisation of sugars			
	according to the Fischer and Haworth formula. Anomers and			
	Epimers.			
	1.2 Structures of complex Carbohydrates-Disaccharides (Homo and			
	Hetero) Oligosaccharides and Polysaccharides (Homo and Hetero).			
	1.3 Concept of reducing and nonreducing sugars, Mutarotation and			
	inversion. General reactions of sugars with Phenylhydrazine, Acids,			
	Bases, Oxidisng agents and Reducing agents and its significance.			
	1.4 Derivatives of Sugars - Deoxy sugars, Phosphorylated sugars, Sulfated			
	sugars, Amino sugars, Acetylated sugars, and Sugar acids, Sugar alcohols and its significance.			

II	Lipids:
	 2.1 Introduction, Biological Significance, Classification with examples. Basic structures of major lipid subclasses- Types of fatty acids, Waxes, Glycerophospholipids (Ester linked and Ether linked), Shingophospholipids, Nonphospholipids, Steroids. Essential and non-essential fatty acids.
	 2.2 Blood group substance. Lipoproteins - Chylomicrons, VLDL, LDL and HDL.
	2.3 General chemical reactions of lipids- Hydrolysis, Saponification, Emulsification, Oxidation. Saponification Number, Acid number, Iodine number, Reichert Meissel number, Polensky number. Hydrolytic and Oxidative rancidity of lipids.
	 2.4 Amphipathic Lipids-Formation of micelles, monolayers, bilayer, liposomes.
	2.5 Membrane structure and composition: Fluid Mosaic model, Significance of biological membranes. Molecular Constituents, percentage composition of plant, animal and microbial membranes, membrane permeability asymmetry and fluidity of membrane, rotation, flip flop movement, lateral diffusion of phospholipids. Protein lipid interaction and factors affecting properties of membranes.
III	Nucleic Acids:
	 3.1 Structure of Nitrogenous bases- Purines and Pyrimidines, Nucleosides, Nucleotides and Polynucleotides. 3.2 The central Dogma, DNA as genetic material 3.3 Structure of DNA. Features of denaturation and renaturation of DNA 3.4 Structure and types of RNA.
IV	Amino Acids:
1 V	 4.1 Introduction, Biological Significance, Classification with examples based on R group, Polarity, optical activity. Essential and Non- essential amino acids, Standard and Nonstandard amino acids. 4.2 Zwitterions and Isoelectric pH, Titration curve of amino acids.
	4.3 General reactions of Amino acids with Ninhydrin, Sanger's, Dansyl chloride, Dabsyl chloride reagents. Deamination, Transamination and decarboxylation of amino acids. UV spectra of amino acids.
X 7	4.4 Peptide bond formation. Solid phase synthesis of peptides.
V	 Proteins: 5.1 Classification on the basis of composition, biological role and shape. 5.2 Structural levels of protein: Primary structure - End group analysis of N andC terminus, breaking of polypeptides to small peptides using enzymes and chemical reagents, Amino acid sequencing by Edmann degradation.
	5.3 Secondary structure-alpha-helix, beta pleated structure, super secondary structure.
	5.4 Tertiary Structure- Forces stabilizing the structure.
	5.5 Quaternary structure – Hemoglobin. Denaturation and Renaturation of proteins.
	5.6 Ramachandran plot and prediction of protein structure.

VI	Vitam	ins and Co	-enzymes:						
	6.1	Classificati	ion - Water-s	oluble a	nd F	Fat-soluble vi	tamins.		
	6.2	Structure,	Coenzyme	forms	of	B -complex	vitamins,	Source,	dietary
		requiremer	nts.						
	6.3	Biochemic	al functions,	deficien	су с	onditions.			

- 1. Principles of Biochemistry, Lehninger CRS Publication.
- 2. Biochemistry, L. Stryer.
- 3. Biochemistry Voet & Voet.
- 4. Problem Approaches in Biochemistry, Wood and Hood.
- 5. Physiological Chemistry Hawk.

Title of the Course and	Microbiology and Cell Biology (CHB-502)Number of Credits: 04			
Course Code	Number of Lectures: 60			
	Course Outcome (COs)	Lettures. 00		
	On completion of the course, the students will be able to:			
CO1	CO1 Recall the basic concepts and theories related to microbiology and cell biology. Describe different types of microscopes, characteristics of different microorganisms, their structures and different sterilization techniques			
CO2	Compare prokaryotic and eukaryotic cells and explain about subcellular organelles and their functions. Identify host and microbes interaction.			
CO3	Predict the types of bacterial, plant and animal viruses along with their characteristics. Interpret the different processes of developmental biology and role of germ cells and stem cells.			
CO4	Explain different processes and events occuring in the cells, their significance and describe cellular aging and cell death. Infer role of microbes in nitrogen metabolism, food spoilage and as toxins.			
CO5	Review the mechanisms of membrane transport and compare different types of transport mechanisms across cell membranes.			
CO6	Rearrange the processes of microbial, animal and plant cells. Integrate the subject knowledge to write and present the scientific topics and research articles.			

Unit No.	Title of Unit and Contents				
	Microbiology				
Ι	Microscopy:				
	1.1 Introduction: Visualization of cells and subcellular components				
	by light microscopy, resolving powers of different microscopes,				
	microscopy of living cells				
	1.2 Phase contrast microscopy: principle, working and applications				
	1.3 Fluorescence microscopy: principle, working and applications				
	1.4 Techniques: specimen preparation Freeze Itching, Freeze fracture, pinch-off				

II	2.1 Classification of microorganisms: system of classification, identifying characters for classification, classification based on different
	requirements (e. g. Nutrition, temperature, oxygen etc.)
	2.2 Characterization methods2.3 Cell structure and components
	1
III	Cultivation of bacteria:
	3.1 Types of growth media (natural, synthetic, complex, enriched, selective- definition with example)
	3.2 Pure culture methods (streak plate, spread plate, pour plate, stab
	culture, slant culture), pure culture characteristics
	3.3 Nutrition, physiology and growth of microbial cells, reproduction
	and growth, synchronous growth, continuous culture of
	microorganisms
13.7	Agents for growth control
IV	4.1 Control of growth by physicals and chemicals agents
	4.2 Mutations by growth control agents and mutant characterization
.	Host microbe interactions
V	5.1 Terminology, events of infection, effect of enzyme and other factors
	5.2 Endotoxins, exotoxins, capsular material
	5.3 Tissue affinity, resistance and immunity
VI	Microbial membrane transport:
V I	6.1 Phosphotransferase system, Group translocation
	6.2 Specialized mechanism for transport of macromolecules (Virus membrane
	assembly and ribosome)
VII	Viruses:
	7.1 Viruses of bacteria, plant and animal cells: Structure, classification and life
	cycle
	7.2 Mycoplasma and viriods, diseases due to viruses
VIII	Role of Microbes
	8.1 Food spoilage and microbial food toxin.
	Cell Biology
IX	Brief Introduction about Cell:
	9.1 Cell theory, Cell classification, cell variability, size, shape and complexity,
	function
Х	Animal cell and Plant cell:
	10.1 Animal cell: Morphology and functions of subcellular components: Nucleus,
	chromatin and chromosomes, plasma membrane, ribosomes, endoplasmic
	reticulum, lysosomes, peroxisomes, Golgi apparatus, mitochondria,
	cytoskeleton
	10.2 Plant cell: Cell wall, chloroplast, glyoxysomes, dictyosomes, vacuoles, xylem,
	phloem, plant cell epidermis 10.3 Sub-cellular fractionation: Differential and density gradient centrifugation,
	marker enzymes
VI	
XI	Cell division and cell cycle:
	11.1. Mitosis: events of different phases and its significance11.2 Meiosis -Types, process and its significance, comparison of mitosis and
	meiosis, cell cycle checkpoints.
	meiosis, cen cycle checkpoints.

XII	Cell junction and mechanism of transport across cell:
	12.1 Anchoring junctions, communicating junctions, tight junctions, gap junctions
	12.2 Extracellular matrix and role of collagen, elastin and fibronectin.
	Plasmodesmata.
	12.3 Principles and mechanism of osmo-regulation, diffusion, passive, active and facilitated transport, features of uniport, symport and antiport transport system, role of proteins in the process like exocytosis, endocytosis-phagocytosis and pinocytosis, receptor mediated endocytosis (cholesterol transport), and ATP, ADP-exchanger.
XIII	Germ cells and Stem cells:
	13.1 Gametogenesis, fertilization and organogenesis: zygote formation, cleavage,
	blastula formation, embryonic fields, gastrulation and formation of germ layers
	in animals.
	13.2 Stem cells: Types and Uses.

- 1. Microbiology, M. S. Pelczar, R. D. Reid, E. C. S. Chan, McGraw Hill, New York (1986).
- 2. General Microbiology (Vth Edition), R. Y. Stanier, Prentice Hall (1986).
- 3. Biology of Microorganisms by Brocks.
- 4. Introductory Microbiology, F. C. Ross, Charles Merril Publication (1983).
- 5. Molecular Biology and Biotechnology edited by J. M. Walker and FB Gingold, Royal Society of Chemistry (1988).
- 6. Industrial Microbiology Casida.
- 7. General Microbiology Stainer R. Y. et al (1987) 5th Ed., Macmillan Press Ltd. London.
- 8. Biotechnology by B. D. Singh.
- 9. Molecular Biology of the Cell, fifth addition Bruce Alberts, Garland Science.
- 10. Cell and Molecular Biology DeRobertis and Saunders (1980).
- 11. The Cell A molecular approach by Geoffrey M. Cooper.
- 12. Cell Biology C.J. Avers, Addision Wesley Co. (1986).
- 13. Molecular Biology by Lodish and Baltimore.

Г

Title of the	Enzymology and Biophysical Techniques (CHB-503)	Number of
Course and		Credits: 04
Course Code		Number of
		Lectures: 60
	Course Outcome (COs)	
	On completion of the course, the students will be able to:	
CO1	Recall basic concepts of separation and purification techniques alo	ng with their
	applications.	
CO2	Articulate concepts, parameters, mechanisms and applications of c	lifferent types of
	chromatography.	
CO3	Illustrate the types of electrophoresis, applications and principles underlying the	
	techniques. Apply the knowledge for biomolecules separation.	
CO4	Identify the types of techniques used for separation and iden	ntification of
	biomolecules	
CO5	Evaluate the separation techniques for biomolecules.	
CO6	Specify the working mechanisms and applications of biophysi	cal techniques.
	Compile methods to separate biomolecules and present the subject	t relevant topics/
	research articles.	

Unit No.	Title of Unit and Contents		
	Enzymology		
I	Classification and features of enzymes		
	1.1 History, Nomenclature and classification,		
	1.2 Remarkable properties- High catalytic power, features of active site, enzyme		
	substrate complex formation: lock and key hypothesis, induced fit and substrate		
	strain theory, enzyme specificity, regulation.		
	1.3 Concept of Isoenzymes, conjugated enzymes - holoenzyme, apoenzyme,		
	prosthetic groups: Cofactors coenzymes, multi-enzymes.		
II	Mechanism of enzymes action		
	2.1 Theoretical background of enzymatic reactions		
	2.2 Factors leading to rate enhancement of enzyme catalyzed reactions, acid-base		
	catalysis, proximity and orientation effects, covalent catalysis, strain or		
	distortion and change in environment, site directed mutagenesis.		
III	Isolation and Purification of Enzymes		
	3.1 Industrially useful enzymes (Amylase, Invertase, pepsin) their isolation and		
	purification techniques.		
	3.2 Immobilization of enzymes and its applications		
IV	Experimental approach to Enzyme mechanics		
	4.1 Kinetics studies		
	4.2 Detection of intermediates		
	4.3 X-ray crystallographic studies		
	4.4 Chemical modification of amino acid side chain and Affinity labelling		
	4.5 Examples of enzymes chymotrypsin, Pyruvate dehydrogenase complex, ATP		
	synthase, Ribonuclease.		

V	Enzymes kinetics
	5.1 Factors affecting enzyme activity - pH
	5.1.1 Temperature
	5.1.2 Substrate, product and enzyme concentrations
	5.1.3 Activators and enzyme inhibition - reversible and irreversible
	5.2 One-substrate reactions, two substrate reactions, pre-steady state kinetics-MM
	equation, LB equation, significance of Km stopped flow technique, relaxation
	methods.
VI	Regulation of Enzyme activity and Enzyme turnover
• •	6.1 Allosteric regulation, Zymogen activation, phosphorylation and
	dephosphorylation of enzymes involved in biochemical pathways.
	6.2 Ligand binding and induced changes, theoretical models, MWC - KNF models
	and their usefulness.
	or cofactor and changes in covalent structure of enzyme,
	6.4 Mechanism of enzyme degradation: lysozomal degradation, ubiquitation and
	other cellular processes of enzyme degradation.
	6.5 Enzyme turnover, Ks and Kd, correlation between the rates of enzyme turnover
	and structure and function of enzymes, significance of enzymeturnover.
VII	Applications
	7.1 Clinical aspects and applications of enzymes, Enzymes in food analysis and
	processing
	Biophysical Techniques
Ι	U. V. and Visible Spectrophotometry
II	Membrane filtration and dialysis:
	2.1 Nitrocellulose, fiberglass, Polycarbonate filters
	2.2 Dialysis, reverse dialysis, glass fibre dialysis.
	2.3 Freeze drying and lyophilization
III	Chromatography theory and practice:
	3.1 Introduction, Partition and Adsorption principle
	3.2 Brief introduction of Paper chromatography and Thin layer chromatography
	3.3 Column chromatography: parameters employed in column chromatography,
	retention, resolution, physical basis of peak broadening plate height equation,
	capacity factors, peak symmetry, standard systems of chromatography and its
	components, stationary phase, elution.
	3.4 Ion exchange chromatography-principle, method, major matrices, examples of
	cation and anion exchangers, applications.
	3.5 Gel chromatography- principle, method, and application.
	3.6 HPLC - Instrumentation, method, Separate modes: normal and reverse,
	detectors. Introduction: Fast protein liquid chromatography (FPLC),
	3.7 GC - instrumentation, principle, procedure, applications.
	3.8 Affinity chromatography - principle, method, affinity ligands, immobilization
	of ligands, activation of matrices, coupling affinity ligands, metal affinity
	chromatography, covalent chromatography, hydrophobic interaction
	chromatography, special chromatographic techniques for nucleic acids: DNA
	cellulose chromatography, MAK hydroxyl-apatite chromatography

IV	Electr	ophoretic techniques:
	4.1	General principles, Types of electrophoresis: moving boundary electrophoresis
		and zone electrophoresis (paper, cellulose-acetate electrophoresis, gel
		Electrophoresis)
	4.2	Electrophoresis of proteins - SDS-PAGE, native PAGE, disc PAGE, gradient
		PAGE, Capillary electrophoresis, Isoelectric focussing, 2-D gel electrophoresis,
		Western blotting
	4.3	Staining techniques - Coomassie and Silver staining,
	4.4	Nucleic acids - Agarose gel electrophoresis, DNA sequencing gels

- 1. Fundamentals of Enzymology by Price and Stevens.
- Enzymology by Dixon and Webb. 2.
- Enzymes by Palmer. 3.
- Enzymes and food processing GG Birch, N. Blackbrough (1981). Physical Biochemistry by D. Freifelder II edition. 4.
- 5.
- Biochemical techniques by Wilson and Walker. 6.
- Biophysical techniques by Upadhyay, Upadhyay and Nath. 7.

Г

Title of the	e Clinical Nutrition and Food Technology Number of	
Course and		
Course Code		Number of
		Lectures: 60
	Course Outcome (COs)	
	On completion of the course, the students will be able to:	
CO1	Recall daily nutrition habits and pattern in population	
CO2	Identify basic food composition and special food in normal and d	
CO3	Interpret deficiency and malnutrition and solutions to overcome t	that with food and
	nutritional supplements	
CO4	Explain the management of different diseases through food and 1	nutrition
CO5	Criticize food toxins, additives and side effects of food toxins	
CO6	Design the food pattern for prevention of disease and for healthy	life
Unit No.	Title of Unit and Contents	
I	1.1 Food habits and nutritional status of India: Food pattern in India with respect to location and production, effect of lifestyle, impact of modernization and technology	
II	2.1 Diet in disease condition	
III	3.1 Malnutrition and mental development, Behavior, Infa Nutrition and Tranquilizers: Types of malnutrition Marasmus, symptoms, diagnosis, treatment and preventiv of malnutrition development of the brain and behaviour, in various stages of age	: Kwashiorkor - e measures. Effect . Food requirement
IV	4.1 Nutritional Management of Inborn Errors of Metabol Therapy Inborn errors of metabolism, its causes, pres through diet	
V	 5.1 Food Toxins, Adverse Effects of Alcohol, Tobacco, Tea 5.1.1 Various food toxins 5.1.2 Adverse effects of alcohol, tobacco and tea 	
VI	6.1 Food of Animal and Plant Origin: few examples	11.
	7.1 Monitoring food quality: analytical methods to check the q	
VIII	8.1 Enzymes in food analysis and processing, toxins in food amino acids and glucose in food	1. Use of alcohols,
IX	Biochemistry of food spoilage, principles of food preservatives: reasons, causative agents, and health effects	
L		

- 1. Essentials of food and nutrition M Swaminathan Vol. II, Applied Aspects (1974), Ganesh Pub, Madras.
- 2. Human Biochemistry James Orten and Otto Neuhaus, 10th ed, CV Mosby Co London.
- 3. Human Nutrition and Dietetics Davidson and Passmore.
- 4. Amino acids in therapy Leon Chaitwo, Thorsons Publishers Inc. NY.
- 5. Physiological Chemistry Hawk.
- 6. Enzymes and Food Processing GG Birch, N Blackbrough (1981).
- 7. Nutrition and Food Processing MG Miller, G Tobin, AVI Publishing Co, Creem Holm (1980)
- 8. Introduction to Food Sciences and Technology GF Stewart and MA Amerine (1973) Academic Press.

Research Methodology (CHB-510)	Number of
	Credits: 04
	Number of
	Lectures: 60
Course Outcome (COs)	
On completion of the course, the students will be able to:	
Recall the concept of research and basics of biostatistics and info	rmatics.
Articulate different types of research in the context of biology, importance of	
ethics, IPR and identify tools to search and represent biological data.	
Apply the knowledge to identify appropriate research methods, to	ools and
technique and softwares.	
Explain the research process, frame research problem and prioritize data	
collection method and compare specific biological databases.	
Summarize the research article and choose appropriate method to write and	
present scientific data.	
Design an experiment and prepare a scientific document, abstract	and integrate
	U
journal articles.	
	Course Outcome (COs) On completion of the course, the students will be able to: Recall the concept of research and basics of biostatistics and info Articulate different types of research in the context of biology, in ethics, IPR and identify tools to search and represent biological d Apply the knowledge to identify appropriate research methods, to technique and softwares. Explain the research process, frame research problem and priorit collection method and compare specific biological databases. Summarize the research article and choose appropriate method to present scientific data. Design an experiment and prepare a scientific document, abstract concepts of bioinformatics and statistics. Present the subject rele

Unit No.	Title of Unit and Content
Ι	 Introduction: Definitions and objectives of research. Types of research (qualitative, quantitative, survey, case studies, applied, meta-analysis, descriptive etc.). Research approaches, significance of research, main components of research process. Ethics and scientific conduct, ethics in life science studies. Introduction to Intellectual Property Rights.
Π	 Research process and methods: 2.1 Identifying the gap or problem. Review of public research in relevant field. 2.2 Literature survey: Print: Sources of information: Primary, secondary, tertiary sources; Journals: Journal abbreviations, abstracts, current titles, reviews, Digital: Web resources, E-journals, Journal access, TOC alerts, Hot articles, Citation index, Impact factor, H-index, E-consortium, UGC infonet, E-books, Internet discussion groups and communities, Blogs, Preprint servers, Search engines, Google Scholar, Science Direct, SciFinder, Scopus, WoS etc. Information Technology and Library Resources: The Internet and World Wide Web. Internet resources for life sciences, Finding and citing published information. 2.3 Research methods: Framing the research problem, hypothesis design: qualities of a good hypothesis, null hypothesis & alternative hypothesis, designing of experiments, Quantitative and Qualitative methods: Data collection, data types, methods of data collection, repeatability, reproducibilityand reliability, sampling methods, data analysis and interpretation. Importance of controls in designing the experiment.

III	cientific writing and Presentations:
	.1 Report writing, significance of report writing, different types of scientific
	reports.
	.2 Format for writing thesis, project report, journal articles: research paper,
	review paper; reports for popular magazines, seminars / symposia /
	conferences / workshops, poster sessions, effective illustration, tables and
	figures, reference styles. .3 Presentations: Power point presentation, poster presentation, Oral
	.3 Presentations: Power point presentation, poster presentation, Oral presentations in classrooms, scientific meets & public audience, defence of
	thesis / research presentations, communication skills (writing and oral) for
	public speaking, workplace communications.
	.4 Use of tools and techniques: methods to search required information
	effectively, reference management software like Mendeley, End Note, Zotero
	etc., Software for paper formatting and detection of Plagiarism.
IV	iostatistics:
	. Introduction to Biostatics, Principles and practice of statistical methods in
	biological research, samples and populations, identification of data for
	statistical analysis.
	. Basic statistics: average, statistics of dispersion, coefficient of variation, confidence limits, Probability distributions (binomial, normal and poisson).
	Mean variants, standard deviations and standard error, correlation and
	regression, Tests of statistical significance (t-Test, chi-square test); Analysis of
	variance - one way and two wayANOVA, latest software, introduction of
	software, exercise on biochemical problems.
V	ioinformatics
	. Introduction to bioinformatics: Application of bioinformatics, Bioinformatics
	resources. Biological databases: overview of biological databases, nucleotide
	databases (Gen Bank, DDBJ, ENA) Protein structure databases (PDB, SCOP,
	CATH), Organism specific databases, Bibliographic databases.
	. Sequence analysis: pair wise alignment, multiple sequences alignment, Scoring
	matrices, Phylogenetic trees. Sequence similarity search, Blast, FASTA, CLUSTAL.
	CLUSIAL.

- 1. Fisher R A, The Design of Scientific Experiment (1971) 9th edition, Collier Macmillan Publishers, London.
- 2. Guide to Scientific and Technical Writing: Cooray P. G.
- 3. Dawson, C. (2002). Practical Research Methods. UBS Publishers, New Delhi.
- 4. Anthony M. Graziano, Michael L. Raulin, Research Methods: A Process of Inquiry (2012) 8th Edition, Pearson Publication, Delhi.
- 5. Barass Robert, Scientists Must Write: A Guide to Better Writing for Scientists, Engineers and Students (2002), Routledge Publication, UK.
- 6. David B. Resnik, The Ethics of Science: An Introduction (1998), Routledge Publication, UK.
- 7. Ganguli Prabuddh, Intellectual Property Rights (2001), Tata McGraw-Hill Publishing Company Ltd., Delhi.
- 8. Jacob Bronowski and Bruce Mazlish, The Western Intellectual Tradition (1960), Harper & Row, New York.
- 9. John D'Angelo, Ethics in Science: Ethical Misconduct in Scientific Research (2012), CRC Press, USA.

Department of Chemistry, Fergusson College (Autonomous), Pune

- 10. Martha Davis, Scientific Papers and Presentations 2nd edition (2004), Academic Press
- 11. Robert A. Day, Barbara Gastel, How to Write and Publish a Scientific Paper, 7th edition (2011), ABC-CLIO, USA.
- 12. Bioinformatics: Sequence and Genome Analysis by Mount D., Cold Spring Harbor Laboratory Press, New York. 2004.
- 13. Introduction to Bioinformatics by Teresa K. Attwood, David J. Parry-Smith, Pearson Education. 1999.
- 14. Introduction to Bioinformatics, 2001. AH Wood, T. K. Parry Smith DJ, Pearson Education Asia.
- 15. Bioinformatics: A practical guide to the analysis of genes and proteins 2001 AD Baxevanis & BFF Ouellette Wiley Interscience New York.
- 16. Fundamentals of Biostatistics by Khan and Khanum.
- 17. Biostatistics A foundation for Health Science, Daniel WW, John Wiley (1983).
- 18. Bioinformatics Databases, Tools and Algorithms: Orpita Bosu, Simminder Kaur Thukral.
- 19. Bioinformatics Sequence and Genome Analysis: David Mount, Cold Spring Harbor Laboratory Press, New York. 2004.
- 20. Bioinformatics: Methods and Protocols 2000 Stephen Misener & Stephen A. Krawetz, Humana Press, New Jersey.
- 21. Bioinformatics: Sequence, Structure and Databanks 2000 Des Higgins & Willie Taylor Oxford University Press.

Title of the	Biochemistry Practical - I (CHB-520)	Number of
Course and	Analytical Biochemistry and Microbiology	Credits: 04
Course Code		
	Course Outcome (COs)	
	On completion of the course, the students will be able to:	
CO1	Recall and tabulate the reactions of biomolecules and different type	es of
	sterilization techniques.	
CO2	Infer tests performed for biomolecules and important techniques for	or cultivation of
	microorganisms.	
CO3	Apply the knowledge to identify and estimate concentration	
	compounds and preservation of microorganisms. Demonstrate met	
	and compare different techniques for qualitative and quantitative a	
CO4	Organize, tabulate and represent information and studies with	1 1
	understanding. Execute methods to study and compare the adult	teration
	andpasteurization in milk samples.	
CO5	Select the exact techniques for estimation of unknown compounds	U
	outcomes of color tests and readings. Predict the effect of U.V. rad	diations on
	growth of microorganisms and growth curves.	
CO6	Design an experiment to study, isolate and purify a particular	
	microorganisms and interpret its results. Write the experiments and	nd prepare the
	journal appropriately	
Expt. No.	Title of Experiment	
1	Isolation techniques (Starch from potato, Casein from milk, e	gg albumin and
	globulin)	
2	Specific reactions for Carbohydrate and its identification with suitab	ole test
3	Detection of amino acids from mixture (qualitatively and quantitatively)	vely)
4	Estimation of carbohydrate (PSA, DNSA)	
5	Estimation of Proteins (Biuret, Lowry and bradford)	
6	Estimation of DNA / RNA by DPA / Orcinol method	
7	Sterilization: Steam, Dry heat and filter and Preservation of bacteria	al culture
8	Microscopic examination (motility, monochrome staining and gram	staining).
9	Media preparation, and isolations of microorganism by pour plate,	spread plate and
	streak plate techniques and Total viable count determination	

- An introduction to Practical Biochemistry David T. Plummer, Tata Mc Graw Hill Co. Ltd., Bombay. (2015) 3rd Edition. 1.
- Introductory Practical Biochemistry. (2001). Ed. S. K. Sawhney and Randhir Singh. Practicals in Biochemistry by Sadashivam and Manickham. 2.
- 3.

Title of the	Biochemistry Practical - II (CHB-521)	Number of	
Course and	Enzymology & Biophysical Techniques	Credits: 04	
Course Code			
	Course Outcome (COs)		
	On completion of the course, the students will be able to:		
CO1	Describe the principle, mechanism role and concentrations of	reagents used in	
	enzymology and biophysical techniques experiments.		
CO2	Estimate enzyme activity and predict the effect of various factors, activators and		
	inhibitors on it. Explain the role of pH and describe methods for preparation of		
	buffers.		
CO3	Carry out isolation, purification and detection of enzymes from different sources.		
	Calculate the concentration of solutions.		
CO4	Demonstrate basic techniques like electrophoresis, chromatography, dialysis		
	enzyme activities at different parameters. Infer experimental results and draw		
	graphs.		
CO5	Decide the absorption maxima and measure the absorbance of the	ne reactions using	
	UV spectrophotometers. Defend problems / questions related	d to theory and	
	experiments.		
CO6	Plan an experiment, interpret and conclude its results. Write th	e experiments and	
	prepare the journal appropriately.		

Exp. No.	Experiment Title
	Enzymology
1.	Extraction, Isolation and detection of common enzymes (invertase / amylase / peroxidase / catalase) from natural source
2.	Assay of Enzyme activity and Specific activity
3.	To assess the effect of substrate concentration (Vmax and Km) on enzyme activity.
4.	Effect of temperature on enzyme activity
5.	Effect of pH, on enzyme activity
6.	To assess the effect of activator and inhibitor on enzyme activity
7.	Immobilization of enzyme and its activity
8.	Enzyme isolation and purification (Any natural source).
	Biophysical Techniques
1.	Introduction to techniques: Use of pipettes (standardization), Concept of pH,preparation of buffer of desired pH and measurement of pH
2.	Calculation, preparation of normal, molar and percentage solutions.
3.	pH metry: Acid base titration curves. Measurement of pKa of amino acids.
4.	Gel filtration chromatography / Ion exchange chromatography
5.	Paper Chromatography / Thin layer chromatography
6.	Electrophoresis: Agarose / 1D-PAGE
7.	UV and Visible Spectrophotometry: Absorption spectra, Verification of Lamberts -Beer's
	Law, absorption spectrum of proteins /amino acids / molecules
8.	Dialysis, reverse dialysis and membrane filtration
9.	Density gradient Centrifugation

1. An introduction to practical Biochemistry-David T. Plummer, Tata Mc Graw Hill Co. Ltd., Bombay. (2015) 3rd Edition.

- 2. Introductory Practical Biochemistry (2001). Ed. S. K. Sawhney and Randhir Singh.
- 3. Practicals in Biochemistry by Sadashivam and Manickam.
- 4. Biochemical techniques by Wilson and Walker.
- 5. Biophysical techniques by Upadhyay, Upadhyay and Nath.

Department of Chemistry, Fergusson College (Autonomous), Pune

	F. Y. M. Sc. Semester II	
Title of the	Metabolism (CHB-551)	Number of
Course and	(CIID SEI)	Credits: 04
Course Code		Number of
course coue		Lectures: 60
	Course Outcome (COs)	
	On completion of the course, the students will be able to:	
CO1	Recall the structure of metabolic intermediates and names of enzyr	nes
CO2	Explain and illustrate the steps in biochemical pathways along w	ith their
	regulations.	
CO3	Apply knowledge of genetics and enzymology to understand the	e formation of
	specific intermediates in biochemical pathways and inborn errors of	of metabolism
CO4	Classify the types of metabolic reactions and outline the	e concepts of
	bioenergetics.	
CO5	Justify varied conditions required for the occurrence of desired n	netabolic
	reactions.	
CO6	Rearrange and write the correct sequence of fates of metabolic pro-	oducts based on
	the specified physiological conditions.	
Unit No.	Title of Unit and Contents	
Ι	Introduction of Metabolism and Bioenergetics:	
	1.1 Anabolism, catabolism, precursors of metabolism and its si	gnificance.
	1.2 Basic laws of thermodynamics, standard free energy, entha	lpy, entropy
	1.3 High energy compounds, structure and significance of ATF)
II	Carbohydrate metabolism:	
	2.1 Carbohydrate Catabolism: Glycolysis, Gluconeog	
	Phosphate Pathway, feeder pathways of glycolysis, fates of	
	aerobic and anaerobic conditions. TCA / Kreb's cycle, (Glyoxylate cycle,
	Uronic acid pathway, Cori's cycle. Pasteur effect.	
	2.2 Carbohydrate biosynthesis: Biosynthesis of starch, su	
	Glycogen. Reaction intermediates, enzymes, energetics &	regulation of all
	the pathways.2.3 Inborn errors of carbohydrate metabolism.	
TH		
III	Lipid Metabolism: 3.1 Fatty acid catabolism: Beta oxidation of saturated and unsa	turated
	fatty acids, odd and even number fatty acids. Reaction	luialeu
	intermediates, enzymes, energy & regulation of all the path	wavs
	3.2 Lipid biosynthesis : Biosynthesis of fatty acids, fatty acids	•
	complex, Triacylglycerol, Phospholipids, Ketogenesis, cho	-
	biosynthesis. Reaction intermediates, enzymes, energetic &	
	all the pathways.	0
	3.3 Inborn errors of lipid metabolism	

IV	Biolog	Biological oxidation:	
	4.1	Structure of mitochondria, features of electron carriers, Electron transport	
		chain in mitochondria and oxidative phosphorylation- chemiosmosis	
		hypothesis.	
	4.2	ATP synthase complex and its mechanism.	
	4.3	Inhibitors and uncouples of ETC and OP	
V		o acid Metabolism:	
	5.1	Amino acid degradation: Amino acid oxidation and production of Urea.	
		Reaction intermediates, enzymes & regulation of all the pathways.	
		Significance of Transamination, oxidative deamination, Decarboxylation reactions of aminoacids.	
	5.2	Degradation of amino acids leading to formation of Pyruvate, Acetyl CoA, α	
		Keto glutarate, Succinyl CoA, Oxaloacetate. Reaction intermediates, enzymes	
		& regulation of all the pathways.	
	5.3	Amino acid biosynthesis: Synthesis of Glutamate, Glutamine, Proline, Arginine, from α ketoglutarate. Reaction intermediates, enzymes &	
		regulation of all the pathways.	
	5.4	Synthesis of Serine, Glycine, Cystine, from 3 Phospho glutarate	
	5.5	Synthesis of amino acid using oxaloacetate and pyruvate as precursors	
	5.6	Synthesis of Aromatic Amino acids.	
	5.7	Inborn errors of amino acid metabolism.	
VI	Specia	alized Molecule derived from Amino acids:	
	6.1	Creatine, Glutathione, Porphyrins, Biological Amines, Nitric oxide.	
	6.2	Gamma glutamyl cycle.	
VII		otide metabolism:	
	7.1	Degradation of Purines and Pyrimidines. Reaction intermediates, enzymes & regulation of pathway	
	7.2	Denovo and salvage pathways of Purine and Pyrimidine biosynthesis.	
	7.3	Reaction intermediates, enzymes & regulation of pathway	
	7.4	Inborn errors of Nucleotide metabolism	

- 1.
- Biochemistry Lehninger. Metabolic Pathways Greenberg. 2.
- 3.
- Biochemistry G. Zubay, Addision Wesley Publ. (1983). Biochemistry Stryer (1988) 3rd Edition W. H. Freeman and Co. Harper's Biochemistry. 4.
- 5.

Title of the	Genetics and Membrane Biochemistry (CHB-552)	Number of
Course and		Credits: 04
Course Code		Number of
		Lectures: 60
	Course Outcome (COs)	
	On completion of the course, the students will be able to:	
CO1	Recall the basic concepts and theories related to genetics and memb	orane
	biochemistry.	
CO2	Explain the principles related to Genetics and discuss types of inheri	tance. Articulate
	the structure and composition of various cell membranes.	
CO3	Apply the principles of genetics to solve the problems. Illustrate dif	ferent methods
	of horizontal gene transfer in bacteria and different transport system	ns in cells.
CO4	Compare different types of mutations and their causes. Examine	e mechanism of
	ions / drug transport in cells and the role of different cells in transpo	ort.
CO5	Review the process of methods of gene transfer in microbes. Compa	are different types
	of transport mechanisms across cell membranes.	
CO6	Rearrange the genetic processes and processes involved in transpo	ort mechanisms.
	across membranes. Integrate the subject knowledge to write a	and present the
	scientific topics and research articles.	

Unit No.	Title of Unit and Contents	
	Genetics	
Ι	Concept of Gene:	
	1.1 Evolution of gene: Beadle and Tatum's one gene one enzyme concept, one gene	
	one polypeptide concept,	
	1.2 Allele, multiple alleles, pseudoalleles, multiple gene,	
	1.3 Fine structure of gene: Cistron, Recon and Muton, Eg. rIIlocus in T4 phage	
	1.4 Complementation test.	
II	Mendelian Genetics:	
	2.1 Mendel's History, Genetic terminology, Genotype, Phenotypes	
	2.2 Mendel's Laws - Dominance, Segregation and Independent assortment with	
	examples	
III	Extension of Mendelian Principles:	
	3.1 Co-dominance, incomplete dominance	
	3.2 Gene interactions: epistasis, pleiotropy, penetrance and expressivity	
IV	4.1 Chromosomal Sex determination,	
	4.2 Sex limited and sex influenced characters	
V	Extra chromosomal inheritance:	
	5.1 Inheritance of mitochondrial and chloroplast genes with examples	
	5.2 Maternal inheritance, nucleocytoplasmic inheritance	
VI	Human Genetics: Pedigree Analysis in human - symbols, construction of pedigree,	
	molecular genetic analysis	

VII	Mutation:
	7.1 Types of mutations, causes and detection
	7.2 Germinal vs. somatic mutation, chromosomal and genetic mutations
	7.3 Human teratogenesis
VIII	Mutant types:
	8.1 Auxotrophs, prototrophs, lethal, conditional mutants
	8.2 Mutant isolation and selection method
IX	Microbial Genetics:
	9.1 Types of plasmids, Fertility factor, Hfr.
	9.2 Methods of genetic transfers - transformation, and conjugation in bacteria. Life cycle
	of bacteriophages, lytic and lysogeny, transduction types: specialized, generalized.
	9.3 Mapping genes by interrupted mating technique.
	9.4 Tetrad analysis.
X	Genetic Code: Biochemical and genetic analysis of the genetic code.
	Membrane Biochemistry
XI	Biological Membrane:
	10.1 Significance of biological membranes. Membrane models: biological and physical
	model.
	10.2 Molecular Constituents, percentage composition of plant, animal and microbial
	membranes, membrane permeability asymmetry and fluidity of membrane,
	rotation, flip flop movement, lateral diffusion of phospholipids. Cell to cell
	interactions. Protein lipid interaction and factors affecting properties of membranes.
XII	Membrane Transport:
	11.1 Principles and mechanism of osmo-regulation, diffusion, passive, active and
	facilitated transport, features of uniport, symport and antiport transport systems.
	11.2 Role of proteins in the process like exocytosis, endocytosis- phagocytosis and
	pinocytosis, receptor mediated endocytosis (cholesterol transport), and ATP, ADP-
	exchanger.
XIII	Special Molecules of Transport:
	12.1 ATPases and its types (Sodium- Potassium pump, ABC, P type, V type ATPases).
	12.2 Sodium, proton Potassium and chloride dependent processes. Phosphotransferase
	system, Group translocation, specialized mechanism for transport of
	macromolecules (Virus membrane assembly and ribosome).
XIV	Ion transport: ``
	Types, proteins involved in ion transport, ionophores (antibiotics: Gramicidin andValinomycin)
XV	Role of liposome in drug transport, cellular permeability, some examples of drugs, role in cell
	signaling
XIV	Techniques: Freeze fracture, pinch-off

1. Genetics by Monoroe W. Strickberger, 1990 (3rd Ed.) Macmillan Pub.

- 2. iGenetics: A Molecular Approach by peter J. Russell.
- 3. Biochemistry, L Stryer, $3^{rd}/4^{th}/5^{th}$ ed, 1989, Freeman and Co. NY.
- 4. Principles of Biochemistry Lehninger.
- 5. Molecular Biology of the Gene Watson Benjamin / Cummings Publ. Company (1987).
- 6. Introduction to Genetics: A Molecular Approach; T A Brown, Garland Science (2011).
- 7. Human Molecular Genetics; Peter Sudbery, (2002) Printice Hall.
- 8. Molecular Biology of the Cell, fifth addition– Bruce Alberts, Garland Science.
- 9. Cell and Molecular Biology DeRobertis and Saunders (1980).
- 10. The Cell A molecular approach by Geoffrey M. Cooper.
- 11. Molecular Cell Biology by Lodish and Baltimore.

Title of the Course	Techniques in Characterisation of Biomolecules - (CHB553)	Number of
andCourse Code		Credits: 04
		Number of
		Lectures: 60
	Course Outcome (COs)	
	On completion of the course, the students will be able to:	
CO1	Recall basic concepts behind all the biophysical techniques	
CO2	Explain the theory, principle, applications of different biophy	ysical techniques
	along with instrumentation.	
CO3	Illustrate the mechanisms of biophysical techniques and characteristical techniques and techniques	oose appropriate
	technique for characterisation of biomolecules	
CO4	Select appropriate method for analysis and characterization of bi	omolecules.
CO5	Compare the types of methods used for structural determination	of biomolecules
	and explain working principle and applications.	
CO6	Specify the operation, instrumentation, uses of scanning a	and transmission
	electron microscopy and apply the knowledge to characterize the	

Unit. No.	Title of Unit and Contents
Biophysical Me	
	Sedimentation:
_	1.1 Theory, Preparatory and analytical ultracentrifuges, Density gradient
	centrifugation.
	1.2 Factors affecting sedimentation velocity, sedimentation coefficient,
	measurement of S, Zonal centrifugation, DNA analysis
	1.3 Determination of molecular weight by sedimentation, diffusion and
	sedimentation equilibrium methods.
	1.4 Applications of sedimentation techniques with examples
II	Viscosity:
	2.1 Theory, effect of macromolecules on viscosity of a solution
	2.2 Flow time measurement, relative viscosity, molecular weightdetermination
III	Isotope Tracer Techniques:
	3.1 Types of radiations, types of decay, rate of radioactive decay, half-life, units of
	radioactivity
	3.2 Detection and measurement of radioactivity, GM counter - designand
	application, Scintillation counters, types, advantages and limitations,
	background noise quenching, Radiation dosimetry, Cerenkov counting
	Autoradiography: Principle, method and applications
V	Spectroscopy:
	5.1 Atomic Absorption Spectroscopy (AAS),
	5.2 Inductively coupled Plasma,
	5.3 Atomic Emission Spectrometry (ICP-AES or IES)
	X-Ray Diffraction: Principle and applications
	Structural determination of Biomolecules
VII	Spectroscopic methods:
	(a) NMR, (b) ESR, (c) IR, (d) Fluorescence, (e) ORD and CD
	Biosensors:
	Introduction, types, Microchips, Cell Biosensors and application.
	Mass Spectrometry:
	LCMS, GCMS, MALDI-MS, MALDI-TOF-MS
	SEM and TEM:
	Introduction, importance of electron microscopy, theory, sample preparation,
	working, principle, instrumentation and application.

- 1. Physical Biochemistry by D. Freifelder IInd Edition Freeman Publication. (1982).
- 2. Biochemical Techniques by Wilson and Walker, Seventh edition, Cambridge University Press (2010).
- Biophysical Techniques by Upadhye and Upadhye, Himalaya Pub. House, (2009).
 Biochemistry by L. Stryer 4th edition (1995).

Title of the	Oncology and Animal Cell culture	Number of
Course and	<i></i>	Credits: 04
Course Code		Number of
		Lectures: 60
	Course Outcome (COs)	
	On completion of the course, the students will be able to:	
CO1	Recall the basic concepts and terms in cancer biology and animal	cell culture
CO2	Learn new terms in development of cancer, its genetic aspec animalcell culture	t and types of ll
CO3	Understand the cellular defense towards tumor formation and the types of media and basic cell growth conditions and media preparation.	
CO4	Demonstrate the mechanism in development of cancer and growth of animal cell.	and development
CO5	Evaluate the parameters and conditions for cell growth.	
CO6	Develop the method to grow the animal cell and study cancel met	tabolism
Unit No.	Title of Unit and Contents	

	The of Onit and Contents
	Oncology and Animal Cell culture
Ι	Introduction to Cancer Biology:
	What is carcinogenesis? Theories behind the cause of cancer, Initiation, Promotion
	and Progression of Cancer.
	Cancer and carcinogens: Role of DNA damage, repair and mutations, viruses and
	carcinogens. Benign and Malignant tumours, Tissue specificity, Hyperplasia and
	Precancerous lesions.
II	Genetic, molecular and cellular mechanisms of cancer:
	Genome stability, Transcriptional controls in cancer, Suppression and activation of oncogenes during transformation of cell, Viral oncogenes, examples ERB, HER-2, rel, large T-antigen etc.
	Cell cycle regulation and its alteration in cancer, Apoptosis, Necrosis, Signalling
	pathways in cancer involving p53, Ras and Rb, Growth factors.
III	Tumour Environment and Cell Interactions:
	Tumour cell dormancy in microenvironment, Cell-Cell interactions, Cell matrix
	interactions, Invasive characters, activity of Morphogens, Angiogenesis, Tumour
	Stem Cells.
IV	Types of Cancers:
	Leukaemia: types of chromosomal translocations.
	Hodgekin's lymphoma, Burkitt's Lymphoma, HPV+ uterus cancer, Prostate cancer
	etc.
V	Immunology and Tumours:
	Immune responses in tumour growth, Immune suppression by tumours, Tumour
	specific antigens and Immune response, immunotherapy by immune modulations.
	Cancer Vaccines - Whole cell vaccines, Peptide vaccines, Dendritic vaccines,
	Prophylaxis.

VI	Cancer Research:
	Tumour specific Biomarkers for efficient diagnosis and prognosis Imaging-Use of
	different Imaging Modalities for assessing molecular and functional aspects of
	Tumour cells. DNA Microarrays- for individual specific analysis of target tumour,
	example - lymphochip.
	Metastasis detection - Techniques and Challenges. Nanotechnology in tumour
	therapy - Nano vectors for targeted drug delivery.
	Bioinformatics - Early diagnosis, Personalized therapy by comparing patient's
	tumour genetic profile to data of genetic profiles, respective treatments and
	responses globally.
	Treatment of cancer symptoms at molecular level targeting specific molecules, drug discovery. Introduction about clinical research of proposed treatment strategies for
	ensuring safety, efficacy and early implementation. miRNAs - role in tumours and
	use in therapy.
VII	Introduction to Animal Cell Culture Laboratory: Definition, applications and
V 11	limitations of tissue culture. Requirement of the tissue culture laboratory: different
	areas requirement, equipments. Aseptic Techniques, Sterilization of materials to be
	used for cell culture: Liquid reagents, media, serum.
VIII	Media Requirements: Properties and special requirements of tissue culture media
	- types of media, requirement of serum, antibiotics, growth factors, conditioned
	medium, serum free media, commonly used cell lines and media used.
IX	Types of Tissue Culture: Organ culture, Primary Explant Culture, Cell Cultures:
	primary culture (adherent cell and suspension cells) and secondary cell culture,
	contact inhibition. Transformation, differentiation and dedifferentiation. Cell lines:
	concept, properties and maintenance. Types of microbial contaminants.
	Cryopreservation and thawing of cells, Factors affecting success of cell culture,
	Cytotoxicity
X	Applications of Cell Culture: In vitro testing of drugs, production of
	pharmaceutical proteins and vaccines.

- 1. Molecular Biology of Cancer Mechanisms, Targets and Therapeutics, Lauren Pecorino
- 2. Advances in Cancer Research, D. Avecedo.
- 3. The Cell: A Molecular Approach by Geoffery M. Cooper.
- 4. Molecular Oncology: Principles and Recent Advances by Javier Camacho.
- 5. Principles of Molecular Oncology, Edited by MH Bronchud, MA Foote, G Giaccone, Oloj and P Workman.
- 6. Culture of Animal Cells: A Manual of Basic Technique and Specialize Applications, 6th Edition by Ian Freshney.
- 7. Principle and Practice of Animal Tissue Culture by Sudha Gangal.
- 8. Cell and Tissue Culture Alan Doyle and J. Bryan Griffiths.

Title of the Course and Course Code		
	Course Outcome (COs)	
	On completion of the course, the students will be able to:	
CO1		
	Recall the basic concepts in Biostatistics and Bioinformatics and represe in an appropriate way.	ent data
CO2	Explain the steps and procedures to represent experimental data and biological databases	search
CO3	Use information and apply respective methods or tools to solve biost and bioinformatics.	tatistics
CO4	Compare sequence, select proper database and choose statistical tool, or programs to generate results, compare output and demonstrate data.	execute
CO5	Select the correct piece of information and summarise the results experiments in suitable format.	of the
CO6	Hypothesise the results, write the experiments, interpretation and prep report and journal appropriately. Develop basic statistical technique	are the

Expt. No.	Title of Experiment
	Biostatistics
1.	Use of Microsoft word, Excel & Power- point to present experimental data
2.	Statistical analysis: Selection of data use of mean, mode, median, SD average and R-square,
3.	Construction of Standard curve and calculation of unknown concentration
4.	Use of Pie chart, bar diagram, flowsheets to represent experimental data
5.	Application of ANOVA, Z test, t -Test and chi square test to the data
6.	Construction of Network pharmacology diagram (Data mining, data linking and diagram construction)
7.	Box and Whisker Plot
8.	Referencing tool: Use of Mendeley, zotero etc

	Bioinformatics
1.	Study of Bioinformatics resources. E.g. NCBI, CGEB, EMBL, EBI, DDJB, ExPASy etc.
2.	Open access bibliographic resources and literature databases. E.g. PubMed, BioMed Central, Public Library of Sciences (PloS), CiteXplore, CD ROM bibliographic databases. Concept of boolean operators in searching
3 & 4	 Introduction to biological data bases and its types and importance. Sequence Databases: (a) Nucleic acid sequence databases: GenBank, EMBL, DDB (b) Protein sequence databases: Uniprot-KB: SWISS-PROT, TrEMBL, UniParc (c) Repositories for high throughput genomic sequences: EST, STS, GSS. (d) Genome Databases at NCBI, EBI, TIGR, SANGER
5	BLAST, FASTA programs for sequence database search, Sequence alignment using BLAST/Database Similarity searching using BLAST
6.	Pairwise alignment- Needleman-Wunsch and Smith-Waterman algorithms
7.	Multiple alignment- CLUSTALW & PRINTS
8.	Prediction and analysis of protein structure using any method (Swiss PDB viewer, MODELLER and by other molecular visualization tools
9.	Phylogenetic analysis using Phylip or Mega
10.	Genome data bank – study the features of human genome
11.	Molecular Docking using AutoDock and Molecular visualization of 2 docked complexes (using Pymol or Chimera)
12.	Basic Structure visualization using Deep View (Performing basic tasks 2 like Selecting and Displaying structures, Colouring, Measuring distances and labeling)
13.	Calculation of phi – psi angles - Ramachandran plot
14.	Homology modelling of a given protein sequence

Department of Chemistry, Fergusson College (Autonomous), Pune [30]

M. Sc. - I (Biochemistry)

References::

- 1. Bioinformatics Sequence and Genome Analysis: David Mount, Cold Spring Harbor Laboratory Press, New York. 2004
- 2. Bioinformatics- a Practical Guide to the Analysis of Genes and Proteins by Baxevanis, A. D. and Francis Ouellellette, B.F., Wiley India Pvt. Ltd. 2009
- 3. Bioinformatics: Sequence, structure and databanks 2000 Des Higgins & Willie Taylor Oxford University Press.
- 4. Introduction to bioinformatics by Teresa K. Attwood, David J. Parry-Smith, Pearson Education. 1999.
- 5. Fundamentals of Biostatistics by Khan and Khanum
- 6. Biostatistics-A foundation for Health Science, Daniel WW, John Wiley (1983)

Department of Chemistry, Fergusson College (Autonomous), Pune [31]

Title of the Course and Course Code	Biochemistry Practical – IV (CHB-571) Phytochemistry and Animal Cell Culture	Number of Credits : 04
	Course Outcome (COs) On completion of the course, the students will be able to:	
CO1	Describe and tell basic phytochemicals and genetics theories/p	rinciples
CO2	Predict different techniques for extraction of phytochemicals and explain methods to study phytochemicals. Articulate concepts and processes of animal cell culture.	
CO3	Use different techniques to extract and study the presence of different phytochemicals. Know various methods in animal cell culture	
CO4	Analyse the basic phytochemicals present in plants with their role and identify them by performing qualitative tests. Learn media components and its preparation and handling of cell culture with precautions.	
CO5	Evaluate activities from standard and other plant sources. Determine the quantity of hair protein by performing a suitable method. Demonstrate the cell growth and morphological features of cell growth.	
CO6	Design new experiments for extraction of phytochemica sources and. Select the proper method of phytochemical is experiments, interpretation and prepare the report and journal a Grow cells independently and study various activities.	olation, write the

Expt. No.	Phytochemical Practical
1.	Extraction methods of Phytochemicals (Cold and Hot -Reflux, Stirring at RT, Soxhlet etc)

Department of Chemistry, Fergusson College (Autonomous), Pune
[32]

2.	Study of Phytochemicals (Qualitative)a. (Chemical and Fluorescent Method) b. Liposoluble pigment c. Anthocyanin by pH differential method		
3.	Quantitative estimation of phytochemicals:a.Polyphenols by FC method.b.Flavonoids by Alcl3 methodc.Tannins by Vanillin -HCl method		
4.	Estimation of Total antioxidant activity by reducing power method /Antioxidant activity by Radical scavenging method		
5.	Isolation of marker enzyme /antioxidant enzyme from plant and check its activity		
6.	Isolation and characterization of amino acid cysteine from human hair .hydrolysate.		
7.	Isolation of alkaloid Caffeine from tea powder /Isolation of lycopene from plants.		
8.	Isolation, characterization and identification of fatty acids from oil by soxhlet method.		
	Cell culture		
Ι	Basics of cell culture: Acquaintance with cell culture laboratory, Culture place: culture cubical P1 to P4; Laminar flow system. Preparatory techniques: Washing		
	of glassware, dry and steam sterilisation. Maintenance of aseptic conditions, Sterilization techniques, Media preparation: Filter sterilization, and media storage. Serum inactivation.		
II	Culturing and sub-culturing of animal cell lines and its maintenance		
III	Cell counting, viable cell count, trypsinization, cryopreservation and revival.		
IV	Culturing and sub-culturing of callus in different media its characterization		
V	Chick embryo fibroblast culture		

1. Biochemical Methods by S. Sadashivam, A. Manickam

Department of Chemistry, Fergusson College (Autonomous), Pune

M. Sc. - I (Biochemistry)

- 2. Phytochemical Methods a Guide to Modern Techniques of Plant Analysis by A. J. Harborne
- 3. Culture of Animal Cells: A Manual of Basic Technique and Specialize Applications, 6th Edition by Ian Freshney.
- 4. Principle and practice of Animal Tissue Culture by Sudha Gangal
- 5. Cell and Tissue Culture Alan Doyle and J. Bryan Griffiths

Department of Chemistry, Fergusson College (Autonomous), Pune [34]