

Deccan Education Society's

Fergusson College (Autonomous), Pune

Learning Outcomes-Based Curriculum

for 3/4 years B. Sc. / B. Sc. / B. A.(Honours)

Programme as per guidelines of

NEP-2020

for

F. Y. B. Sc./B. A. (Mathematics)

With effect from Academic Year

2023-2024

B. Sc. Major Mathematics

Program Outcomes (POs)

PO1	Disciplinary Knowledge
	Demonstrate comprehensive knowledge of the discipline that forms a part of a
	postgraduate programme. Execute strong theoretical and practical understanding
	generated from the specific programme in the area of work.
PO2	Critical Thinking and Problem solving
	Exhibit the skill of critical thinking and understand scientific texts and place scientific
	statements and themes in contexts and also evaluate them in terms of generic
	conventions. Identify the problem by observing the situation closely, take actions and
	apply lateral thinking and analytical skills to design the solutions.
PO3	Social competence
	Exhibit thoughts and ideas effectively in writing and orally; communicate with others
	using appropriate media, build effective interactive and presenting skills to meet global
	competencies. Elicit views of others, present complex information in a clear and
	concise way and help reach conclusions in group settings.
PO4	Research-related skills and Scientific temper
	Infer scientific literature, build a sense of enquiry and able to formulate, test, analyze,
	interpret and establish hypothesis and research questions; and to identify and consult
	relevant sources to find answers. Plan and write a research paper/project while
	Emphasizing on academics and research ethics, scientific conduct and creating
	awareness about intellectual property rights and issues of plagiarism.
PO5	Trans-disciplinary knowledge
	Create new conceptual, theoretical and methodological understanding that integrates
	and transcends beyond discipline-specific approaches to address a common problem.
PO6	Personal and professional competence
	Perform independently and also collaboratively as a part of a team to meet defined
	objectives and carry out work across interdisciplinary fields. Execute interpersonal
	relationships, self-motivation and adaptability skills and commit to professional ethics.
PO7	Effective Citizenship and Ethics
	Demonstrate empathetic social concern and equity centred national development, and
	ability to act with an informed awareness of moral and ethical issues and commit to
	professional ethics and responsibility.
PO8	Environment and Sustainability
	Understand the impact of the scientific solutions in societal and environmental contexts
	and demonstrate the knowledge of and need for sustainable development.
PO9	Self-directed and Life-long learning
	Acquire the ability to engage in independent and life-long learning in the broadest
	context of socio-technological changes.

Program Specific Outcomes (PSOs) of Department of Mathematics

PSO1	Bachelor's degree in mathematics is the culmination of in-depth knowledge of algebra, calculus, geometry, differential equations and several other branches of mathematics. This also leads to study of related areas like computer science and statistics. Thus, this programme helps learners in building a solid foundation for higher studies in mathematics.
PS02	in analytical reasoning. This can be utilised in modelling and solving real life problems.
PSO3	Students undergoing this programme learn to logically question assertions, to recognise patterns and to distinguish between essential and irrelevant aspects of problems. They also share ideas and insights while seeking and benefitting from knowledge and insight of others. This helps them to learn behave responsibly in a rapidly changing interdependent society.
PSO4	Students completing this programme will be able to present mathematics clearly and precisely, make vague ideas precise by formulating them in the language of mathematics, describe mathematical ideas from multiple perspectives and explain fundamental concepts of mathematics to non-mathematicians.
PSO5	Completion of this programme will also enable the learners to join teaching profession in primary and secondary schools.
PSO6	This programme will also help students to enhance their employability for government jobs, jobs in banking, insurance and investment sectors, data analyst jobs and jobs in various other public and private enterprises.

Fergusson College (Autonomous), Pune First Year Curriculum as per NEP 2020 **Department of Mathematics Course Structure**

Semester	Paper	Paper Code	Paper Title	Туре	Credi ts
	Major	MTS-101	Algebra and Geometry	Theory	4
	_	MTS-100	Mathematics Practical – 1	Practical	2
		MTS-111	Elementary Counting methods and Matrices	Theory	2
	Minor	MTS-112	Mathematics Practical-1	Practical	2
		MTS-113	Geometry and Matrices	Theory	2
T		MTS-114	Mathematics Practical -1	Practical	2
1		MTS-115	Foundation of Mathematics	Theory	2
	Minor (CS)	MTS-116	Mathematics Practical – 1	Practical	2
	Minor (BA)	MTS-119	Industrial Mathematics-I	Theory	2
	OE-1	MTS-120	Introduction to Business Mathematics	Theory	2
	OE -2	MTS-121	Introduction to Quantitative Logical Thinking-I	Theory	2
	SEC-1	MTS-140	Foundation of Mathematics	Skill	2
		MTS-151	Calculus	Theory	4
	Major	MTS-150	Mathematics Practical -2	Practical	2
		MTS-161	Calculus with Sequences and Series	Theory	2
	Minor	MTS-162	Mathematics Practical -2	Practical	2
		MTS-163	Calculus and Differential Equations	Theory	2
II		MTS-164	Mathematics Practical -2	Practical	2
		MTS-165	Graph Theory	Theory	2
	winor (CS)	MTS-166	Mathematics Practical – 2	Practical	2
	Minor (BA)	MTS-169	Industrial Mathematics - II	Theory	2
	OE-3	MTS-170	Introduction to Applied Mathematics	Theory	2
	OE -4	MTS-171	Introduction to Quantitative Logical Thinking-II	Theory	2

* OE – Open Elective, SEC- Skill Enhancement Course, VSC- Vocational Skill Course

Teaching and Evaluation (Only for FORMAL education courses)

Course	No. of Hours per	No. of Hours per	Maximum	CE	ESE
Credits	Semester	Week	Marks	40 %	60%
	Theory/Practical	Theory/Practical			
1	15 / 30	1 / 2	25	10	15
2	30 / 60	2 / 4	50	20	30
3	45 / 90	3/6	75	30	45
4	60 / 120	4 / 8	100	40	60

Eligibility: As per the rules and regulations of Savitribai Phule Pune University (SPPU)

F. Y. B.Sc. Semester I		
MTS-101	Algebra and Geometry (Major- Theory)	Number of Credits: 04
	Course Outcomes (COs) On completion of the course, the students will be able to:	Bloom's cognitive level
CO1	Understand basic counting principles. Understand the importance of roots of real and complex polynomials and learn various methods of obtaining roots.	1
CO2	Familiarize with basic number theoretic concepts such as Divisibility and congruences.	2
CO3	Employ De Moivre's theorem in a number of applications to solve numerical problems.	3
CO4	Recognize consistent and inconsistent systems of linear equations by the row echelon form of the augmented matrix, using rank.	4
CO5	Find eigenvalues and corresponding eigenvectors for a square matrix.	5
CO6	Explain the properties of three-dimensional shapes.	6

Suggested Pedagogical Processes

- Lecture method: Concepts and operations of sets, Matrix Algebra, Graphs, Trees on Blackboard with examples, problems on sets using Venn diagrams
- ICT supplemented teaching
- Experiential learning
- Case studies
- Problem based learning
- Student seminars
- Group discussions

MTS-101: Algebra and Geometry(Major) <u>Course Contents</u> <u>Semester I</u>

Unit No.	Title of Unit and Contents	No. of hours
	Basic Counting Methods	
	1.1 Addition principle	
Ι	1.2 Multiplication principle,	5
	1.3 Permutations and combinations	
	1.4 Binomial theorem.	
	Theory of Equations	
	2.1 Elementary theorems on the roots of an equations	
	2.2 The remainder and factor theorems, Synthetic division,	
П	2.3 Factored form of a polynomial.	10
	2.4 The Fundamental theorem of algebra. (Without proof)	
	2.4 Relations between the roots and the coefficients of polynomial equations	
	2.5 Integral and rational roots.	
	Complex Numbers	
	3.1 Polar representation of complex numbers,	
111	3.2 The <i>n</i> th roots of unity	5
	3.3 De Moivre's theorem and its applications(integer and rational indices)	_
	Basic Number Theory	
	4.1 The division algorithm,	
IV	4.2 Divisibility and the Euclidean algorithm.	10
	4.3 The fundamental theorem of arithmetic.	
	4.4 Modular arithmetic and basic properties of congruences.	
	Row Echelon Form of Matrices and Applications	
	5.1 Systems of linear equations	
	5.2 Row reduction and echelon forms	
	5.3 The rank of a matrix and applications;	
	5.4 Matrix operations,	
V	5.5 Determinants.	
	5.6 The inverse of a matrix.	15
	5.7 Characterizations of invertible matrices:	
	5.8 Eigen values and eigenvectors.	
	5.9 The characteristic equation and the Cayley-Hamilton theorem.	
	Planes, Straight Lines and Spheres	
	6.1 Planes: Distance of a point from a plane.	
	6.2 Angle between two planes	
	6.3 pair of planes	
	6.4 Bisectors of angles between two planes:	
	6.5 Straight lines: Equations of straight lines	
VI	6.6 Distance of a point from a straight line	15
VI.	6.7 Distance between two straight lines	15
	6.8 Distance between a straight line and a plane:	
	6.0 Subarae: Different forms	
	6.10 Intersection of two spheres	
	6.11 Orthogonal intersection	
	6.12 Tanganta and normal	
	0.12 Tangents and normal.	1

Reference	1. Barbeau, Edward J, Polynomials, Springer, 1989.
Books	2. Brown and Churchill, Complex Variables and Applications, 7th Edition,
	McGraw Hill, 2010.
	3. Shantinarayan: Analytical Solid Geometry, S. Chand and Company Ltd, New
	Delhi, 1998.
	4. P.K.Jain and Khalil Ahmad, A Textbook of Analytical Geometry of Three
	Dimensions, Wiley Estern Ltd. 1999.
	5. Askwyth, E. H: The Analytical Geometry of the Conic Sections.
	6. David M. Burton, Elementary number theory, Seventh Edition, Tata McGraw
	Hill, 2012.
	7. W. S. Bunside and A. R. Panton: The Theory of Equations: With an Introduction
	to the Theory of Binary Algebraic Forms, Dover Phoenix Editions, 2005.
	8. Alan Tucker, Applied Combinatorics, Wiley, 1995.
	9. Serge Lang: Introduction to Linear Algebra, Second Edition, 1986.
	10. Howard Anton, Chris Rorres, Elementary Linear Algebra: Applications
	Version, Wiley (11th Edition).
	11. S. Kumaresan, Linear Algebra: A Geometric Approach, Prentice Hall of India,
	New Delhi, 1999.
	12. K. Hoffmann and R. Kunze Linear Algebra, Second Ed. Prentice Hall of India
	New Delhi, (1998).
	13. G.B. Thomas, R. Finney, Calculus and Analytic Geometry, Addison-Wesley,
	1995.
	14. Titu Andreescu, & Dorin Andrica (2014). <i>Complex Numbers from A toZ.</i> (2 nd
	edition). Birkhäuser.
	15. Robert J. T. Bell (1994). An Elementary Treatise on Coordinate Geometry of
	Three Dimensions. Macmillan India Ltd.
	16. 13. D. Chatterjee (2009). Analytical Geometry: Two and Three Dimensions.
	Narosa Publishing House.
	17. 14. Leonard Eugene Dickson (2009). First Course in the Theory of Equations.
	I ne Project Gutenberg EBOOK (<u>nttp://www.gutenberg.org/ebooks/29/85</u>)
	18. Bernard Kolman & David K. Hill (2003). Introductory Linear Algebra with
	Applications (/th edition). Pearson Education Pvt. Ltd. India.
	19. David C. Lay, Steven R. Lay & Judi J. McDonald (2016). Linear Algebra and
	its Applications (5th edition). Pearson Education Pvt. Ltd. India.

F. Y. B.Sc. Semester I			
MTS-100	Mathematics Practical – 1 (Major- Practical)	Number of Credits: 02	
1	Permutations and combinations		
2	Binomial theorem		
3	Theory of Equations-I		
4	Theory of Equations-II		
5	Complex Numbers		
6	Division algorithm and Euclidean algorithm		
7	Congruences		
8	Matrix Algebra		
9	Eigen values, Eigenvectors and Cayley-Hamilton theorem		
10	Planes		
11	Straight lines		
12	Sphere		

F. Y. B. Sc. Semester I			
MTS-111	Elementary Counting methods and Matrices (Minor - Theory)	Number of Credits : 2	
	Course Outcomes (COs)	Bloom's	
	On completion of the course, the students will be able to:	cognitive level	
CO1	Understand basic counting principles. Understand the importance of roots of real and complex polynomials and learn various methods of obtaining roots.	1	
CO2	Familiarize with basic concepts of counting.	5	
CO3	Employ De Moivre's theorem in a number of applications to solve numerical problems.	2	
CO4	Recognize consistent and inconsistent systems of linear equations by the row echelon form of the augmented matrix, using rank.	3	
CO5	Find eigenvalues and corresponding eigenvectors for a square matrix.	4	
CO6	Explain the combinatorial Identities.	6	

MTS-111: Elementary Counting methods and Matrices <u>Course Contents</u> <u>Semester I</u>

Unit No.	Title of Unit and Contents	No. of
		hours
	Basic Counting Methods	
	1.1 Addition principle	
т	1.2 Multiplication principle,	10
1	1.3 Permutations and combinations	-
	1.4 Binomial theorem.	
	1.5 Combinatorial Identities	
	Complex Numbers	
п	2.1 Polar representation of complex numbers,	5
11	2.2 The nth roots of unity	
	2.3 De Moivre's theorem and its applications(integer and rational indices)	
	Row Echelon Form of Matrices and Applications	
	3.1 Systems of linear equations	
	3.2 Row reduction and echelon forms	
	3.3 The rank of a matrix and applications;	15
III	3.4 Matrix operations, 5.5 Determinants,	10
	3.6 The inverse of a matrix,	
	3.7 Characterizations of invertible matrices;	
	3.8 Eigen values and eigenvectors,	
	3.9 The characteristic equation and the Cayley-Hamilton theorem.	

Reference	1. Brown and Churchill, Complex Variables and Applications, 7th Edition, McGraw Hill,
Books	2010. 2. David M. Burton, Elementary number theory, Seventh Edition, Tata McGraw Hill,
	2012.
	3. Alan Tucker, Applied Combinatorics, Wiley, 1995.
	4. Serge Lang: Introduction to Linear Algebra, Second Edition, 1986.
	5. Howard Anton, Chris Rorres, Elementary Linear Algebra: Applications Version, Wiley
	(11th Edition).
	6. S. Kumaresan, Linear Algebra: A Geometric Approach, Prentice Hall of India, New Delhi,
	1999.
	7. K. Hoffmann and R. Kunze Linear Algebra, Second Ed. Prentice Hall of India New Delhi,
	(1998).
	8. Titu Andreescu, & Dorin Andrica (2014). Complex Numbers from A toZ. (2nd edition).
	Birkhäuser.
	9. Bernard Kolman & David R. Hill (2003). Introductory Linear Algebra with Applications
	(7th edition). Pearson Education Pvt. Ltd. India.
	10. David C. Lay, Steven R. Lay & Judi J. McDonald (2016). Linear Algebra and its
	Applications (5th edition). Pearson Education Pvt. Ltd. India.

F. Y. B. Sc. Semester I			
MTS-112	Mathematics Practical-1 (Minor- Practical)	Number of Credits: 02	
1	Counting Principle-I		
2	Counting Principle-II		
3	Binomial theorem-I		
4	Binomial theorem-II		
5	Combinatorial identities-I		
6	Combinatorial identities-II		
7	Complex Numbers-I		
8	Complex Numbers-II		
9	Matrix Algebra-I		
10	Matrix Algebra-II		
11	Eigen values, Eigenvectors and Cayley-Hamilton theorem-I		
12	Eigen values, Eigenvectors and Cayley-Hamilton theorem-II		

F. Y. B. Sc. Semester I		
MTS-113	Geometry and Matrices	Number of
	(Minor-Theory)	Credits : 02
	Course Outcomes (COs)	Bloom's
On con	pletion of the course, the students will be able to:	cognitive level
CO1	Understand basics of Geometry.	1
CO2	Familiarize with basic concepts of complex numbers.	5
CO3	Employ De Moivre's theorem in a number of applications to solve numerical problems.	2
CO4	Recognize consistent and inconsistent systems of linear equations by the row echelon form of the augmented matrix, using rank.	3
CO5	Find eigenvalues and corresponding eigenvectors for a square matrix.	4
CO6	Explain the properties of three-dimensional shapes.	6

MTS-113: Geometry and Matrices <u>Course Contents</u> <u>Semester I</u>

Unit No.	Title of Unit and Contents	No. of
	Complex Numbers	nours
	1 1 Polar representation of complex numbers	5
I	1.2 The nth roots of unity	5
	1.3 De Moivre's theorem and its applications(integer and rational indices)	
	Row Echelon Form of Matrices and Applications	
	2.1 Systems of linear equations	
	2.2 Row reduction and echelon forms	
	2.3 The rank of a matrix and applications:	15
п	2.4 Matrix operations 5.5 Determinants	15
	2.6 The inverse of a matrix.	
	2.7 Characterizations of invertible matrices:	
	2.8 Eigen values and eigenvectors.	
	2.9 The characteristic equation and the Cayley-Hamilton theorem.	
	Planes, Straight Lines and Spheres	
	3.1 Planes: Distance of a point from a plane,	
	3.2 Angle between two planes,	
	3.3 pair of planes,	
	3.4 Bisectors of angles between two planes;	
	3.5 Straight lines: Equations of straight lines,	10
III	3.6 Distance of a point from a straight line,	10
	3.7 Distance between two straight lines,	
	3.8 Distance between a straight line and a plane;	
	3.9 Spheres: Different forms,	
	3.10 Intersection of two spheres,	
	3.11 Orthogonal intersection,	
	3.12 Tangents and normal.	

Reference	1 Brown and Churchill, Complex Variables and Applications, 7th Edition, McGraw Hill, 2010.
Books	2. Shantinarayan: Analytical Solid Geometry, S. Chand and Company Ltd, New Delhi, 1998.
	3. P.K.Jain and Khalil Ahmad, A Textbook of Analytical Geometry of Three Dimensions, Wiley
	Estern Ltd. 1999.
	4. Askwyth, E. H: The Analytical Geometry of the Conic Sections.
	5. Serge Lang: Introduction to Linear Algebra, Second Edition, 1986.
	6. Howard Anton, Chris Rorres, Elementary Linear Algebra: Applications Version, Wiley (11th
	Edition).
	7. S. Kumaresan, Linear Algebra: A Geometric Approach, Prentice Hall of India, New Delhi,
	1999.
	8. K. Hoffmann and R. Kunze Linear Algebra, Second Ed. Prentice Hall of India New Delhi,
	(1998).
	9. G.B. Thomas, R. Finney, Calculus and Analytic Geometry, Addison-Wesley, 1995.
	10. Titu Andreescu, & Dorin Andrica (2014). Complex Numbers from A toZ. (2nd edition).
	Birkhäuser.
	11. Robert J. T. Bell (1994). An Elementary Treatise on Coordinate Geometry of Three
	Dimensions. Macmillan India Ltd.
	12. D. Chatterjee (2009). Analytical Geometry: Two and Three Dimensions. Narosa Publishing
	House.
	13. Bernard Kolman & David R. Hill (2003). Introductory Linear Algebra with Applications (7th
	edition). Pearson Education Pvt. Ltd. India.
	14. David C. Lay, Steven R. Lay & Judi J. McDonald (2016). Linear Algebra and its
	Applications (5th edition). Pearson Education Pvt. Ltd. India.

F.Y.B.Sc. Semester I		
MTS-114	Mathematics Practical-1	Number of Credits: 02
	(Minor- Practical)	
1	Complex Numbers-I	
2	Complex Numbers-II	
3	Matrix Algebra-I	
4	Matrix Algebra-II	
5	Eigen values, Eigenvectors and Cayley-Hamilton theorem-I	
6	Eigen values, Eigenvectors and Cayley-Hamilton theorem-I	Ι
7	Planes-I	
8	Planes-II	
9	Straight lines-I	
11	Sphere-I	
12	Sphere-II	

F.Y.B.Sc. Semester I		
MTS-115	Foundation of Mathematics	Number of
	(Minor- Theory for CS)	Credits :
		02
	Course Outcomes (COs)	Bloom's
	On completion of the course, the students will be able to:	cognitive
		level
CO1	Describe the fundamentals of logic and operands.	1
CO2	Discuss concepts of relation and functions .	2
CO3	Apply the counting principle on real life situations.	3
CO4	Explain different methods of mathematical proofs by using logical	4
	reasoning	
CO5	Determine the solutions of recurrence relations.	5
CO6	Integrate basic concepts of logic, Recurrence and counting principles.	6

Unit No.	Title of Unit and Contents	No. of hours
Ι	Statements and Logic	5
	1.1 Statements	
	1.2 Statements with quantifiers	
	1.3 Compound Statements	
	1.4 Implications	
	1.5 Proofs in Mathematics	
	Sets, Relations and Functions 2.1 Sets, Operations on Sets, Power Set, Cartesian product of Sets, Graphical representation of sets	10
	2.2 Relations, types of Relations.	
т	2.3 Equivalence relations.	
11	2.4 Partition of a set and equivalence classes.	
	2.5 Digraphs of relations, matrix representation and composition of Relations.	
	2.6 Transitive closure and Warshall's Algorithm.	
	2.7 Types of functions (One – One, Onto, Bijective).	5
	3.1 Cardinality of a finite set.	5
111	3.2 The Sum Rule, the Product Rule, the Inclusion- Exclusion Principle.3.3 Statement of Pigeonhole Principle, Its Applications.	
IV	Recurrence Relation	10
	4.1 Introduction to Recurrence Relations, Formation.	
	4.2 Linear Recurrence Relations with constant coefficients.	
	4.3 Homogeneous Solutions.	
	4.4 Particular Solutions.	
	4.5 Total Solutions.	

References:

- 1. Kenneth Rosen, 'Discrete Mathematics and its applications', Seventh Edition by Tata McGraw Hill.
- 2. Kolman, Busby, Ross, Rehman, 'Discrete Mathematical Structures', Sixth edition, by Prentice Hall.
- 3. C. L. Liu, 'Elements of Discrete Mathematics', Fourth edition, by Tata McGraw Hill.

F.Y.B.Sc. Semester I		
MTS-116	Mathematics Practical – 1	Number of
	(Minor- Practical for CS)	Credits: 02
	Course Outcomes (COs)	
	On completion of the course, the students will be able to:	
CO1	Identify basic commands of scilab	
CO2	Illustrate plotting of 2D and 3D graphs using scilab	
CO3	Implement the fundamentals of logic and operands.	
CO4	Analyze Uniqueness and existence of solutions of linear equat scilab	ions using
CO5	Evaluate and validate ifferent methods of Numerical techniqu	es using scilab
CO6	Apply concepts of Discrete mathematics in various fields.	

Unit No.	Title of Unit and Contents
1	Scilab- I(Data types, Special matrices, Operations on Matrices, Solving system of
	L.E.)
2	Scilab – II (Defining polynomials, plotting of 2-D and 3-D graphs))
3	Introduction to Scilab programming-I (if , while, for loop)
4	Basic Scilab programming-II
5	Regula Falsi method to find root of a function $f(x) = 0$ using Scilab.
6	Newton Raphson method to find root of a function $f(x) = 0$ using Scilab.
7	Trapezoidal rule to find Integration (using Scilab)
8	Simpson's 1/3 rd rule to find Integration (using Scilab)
9	Simpson's 3/8 th rule to find Integration (using Scilab)

10	Statements and Logic
11	Sets, Relations and Functions
12	Counting Principles
13	Recurrence Relation
14	Student Activity – I
15	Student Activity – II

F. Y. B. A. Semester I		
MTS-119	Industrial Mathematics-I	Number of
	(Minor- Theory for BA)	Credits : 02
	Course Outcomes (COs)	Bloom's
	On completion of the course, the students will be able to:	cognitive
		level
CO1	Recall the set and relation.	1
CO2	Understand the function graphically.	5
CO3	Compute the derivative of the function.	2
CO4	Analyze the derivatives of the function at point.	3
CO5	Check the function at the stationary point is increasing and decreasing at	4
	a point.	
CO6	Decide the point of inflection from Concavity and Convexity.	6

MTS-119: Industrial Mathematics-I <u>Course Contents</u> <u>Semester I</u>

Unit No.	Title of Unit and Contents	No. of
		hours
	Basic Concepts in Calculus:	
	1.1 Sets	
Ι	1.2 Functions	6
	1.3 Graphs, Slopes and Intercepts	
	1.4 Graphs of Nonlinear Functions	
	The Derivatives and the Rule of Differentiations:	
п	2.1 Limits	
	2.2 Continuity	
	2.3 The Slope of a Curvilinear Function	10
	2.4 The Derivative	
	2.5 Differentiability and Continuity	
	2.6 Rules of Differentiation	

	2.7 Higher Order Derivatives	
	2.8 Implicit Differentiation.	
	Use of Derivatives in Mathematics and Economics:	
	3.1 Increasing and Decreasing functions	
	3.2 Concavity and Convexity	
	3.3 Relative Extrema	
	3.4 Inflection Points	
III	3.5 Curve Sketching	10
l	3.6 Optimization of Functions	
	3.7 Marginal Concepts	
	3.8 Optimizing economic functions	
	3.9 Price elasticity of demand and supply	
	3.10 Relationship among total, Marginal and Average concepts.	
	Exponential and Logarithmic Functions:	
IV	4.1 Exponential Functions	
	4.2 Logarithmic Functions	
	4.3 Properties of Exponents and Logarithms	4
	4.4 Natural Exponential and Logarithmic Functions	
	4.5 Solving Natural Exponential and Logarithmic Functions	

Text Book	 Alpha C. Chiang, Kevin Wainwright, Fundamental Methods of Mathematical Economics Knut Sydsaester and Peter Hammond with Arne Strom Essential Mathematics for Economic Analysis, Pearson. Edward Dowling, Introduction to Mathematical Economics, Schaum's Outline Series
Reference	 Christopher J. Stocker, Michael R. Ziegler, Karl E. Byleen, Raymond A. Barnett,
Books	College Mathematics for Business, Economics, Life Sciences, and Social Sciences Carl P. Simon, Lawrence Blume Mathematics for Economists.

F.Y.B.Sc. Semester I		
MTS-120	Introduction to Business Mathematics (OE-I)	Number of Credits : 02
	Course Outcomes (COs) On completion of the course, the students will be able to:	Bloom's cognitive level
CO1	Understand basic concepts of simple and compound interest.	1
CO2	Familiarize basic concepts of Shares and mutual funds.	2
CO3	Applications like dividend, NAV, SIP etc.	3
CO4	Relation between Nominal and Effective rate of interest	4
CO5	Find amount and present value of an ordinary certain	5
CO6	Explain the linear equation and inequalities.	6

<u>Course Contents</u> <u>MTS-120: Introduction to Business Mathematics (OE- I)</u> <u>Semester - I</u>

No. of
hours
17
4
_

	Functions:	
Ш	3.1 Functions	9
	3.2 Graphs, Slope and Intercepts	
	3.3 Graphs of Non-linear Functions	
	3.4 Linear equations and inequalities.	

Reference	1. Edward Dowling (1992), Introduction to Mathematical Economics, Schaum's
Books	Outline Series.
	2. Christopher J. Stocker, Michael R. Ziegler, Karl E. Byleen (2019), Raymond A.
	BarnettCollege Mathematics for Business, Economics, Life Sciences, and Social
	Sciences, Fourteenth edition Pearson.
	3. Alpha C. Chiang (2005), Kevin Wainwright Fundamental Methods of
	Mathematical Economics, Fourth Edition, McGraw Hill
	4. Mike Rosses and Piotr Lis (2016), Basic Mathematics for Economists, Third
	edition, Routledge
	5. Frank Ayres (1983), Mathematics of Finance, Schaum's Outline Series
	6. Carl P. Simon, Lawrence Blume Mathematics for Economists.
	7. Knut Sydsaester and Peter Hammond with Arne Strom Essential Mathematics for
	Economic Analysis, Pearson.
	8. Ronald Shone, Economic Dynamics Phase Diagrams and Their Economic
	Application, Cambridge University Press.

F.Y.B.Sc. Semester I			
MTS-121	Introduction to Quantitative and Logical Thinking	Number of	
	(OE-2)	Credits: 02	
	Course Outcomes (COs)	Bloom's	
On com	pletion of the course, the students will be able to:	cognitive	
		level	
CO1	Understand basic concepts Integers, Rational and	1	
	Irrational numbers.		
CO2	Familiarize basic concepts of Permutation and	2	
	Combinations.		
CO3	Interpret the concepts of LOGICAL REASONING	3	
	Skills		
CO4	Solve the problems easily by using short-cut method with	4	
	time management which will be helpful to them		
	to clear the competitive exams for better job opportunity.		
~ ~ ~			
CO5	Analyze the problems logically and approach the	5	
	problems in a different manner like Probability		
CO6	Construct the problems based on Ages.	6	

<u>Course Contents</u> <u>MTS-121: Introduction to Quantitative and Logical Thinking-I(OE-II)</u> <u>Semester I</u>

Unit No.	Title of Unit and Contents	No. of
		hours
	1.1 Whole numbers	
	1.2 Integers	
	1.3 Rational and irrational numbers	
т	1.4 Fractions	
1	1.5 Square roots and Cube roots	8
	1.6 Surds and Indices	
	1.7 Problems on Numbers	
	1.8 Divisibility	
	2.1 HCF and LCM	
	2.2 Ratio and Proportion	
	2.3 Percentage	
п	2.4 Average	
11	2.5 Problems Based on Ages	10
	2.6 Profit and Loss	
	2.7 Squares and Square Roots	
	2.8 Cubes and Cube Roots.	
III	3.1 Series	
	3.2 Progression and Sequence	6
	3.3 Fractions	
TX 7	4.1 Permutation and Combination	
IV	4.2 Probability	6

Reference	1. R. V. Praveen Quantitative Aptitude and Reasoning, PHI Learning Pvt Ltd
Books	2. Dinesh Khattar Quantitative Aptitude for Competitive Examinations, Pearson
	3. R.S. Aggarwal Quantitative Aptitude

F. Y. B. Sc. Semester I		
MTS-140	Foundation of Mathematics (SEC-1)	Number of Credits: 02
	Course Outcomes (COs) On completion of the course, the students will be able to:	Bloom's cognitive level
CO1	Describe fundamentals of set theory, relations, functions, equivalence classes.	1
CO2	Explain mathematical statements logically	2
CO3	Apply techniques of proof to prove the statement in different ways.	3
CO4	Analyze statements logically and write it using quantifiers	4
CO5	Evaluate the images and inverse images of elements under functions.	5
CO6	Generate statements from quantifiers	6

Suggested Pedagogical Processes

- Lecture method: Concepts and operations of sets, Matrix Algebra, Graphs, Trees on Blackboard with examples, problems on sets using Venn diagrams
- ICT supplemented teaching
- Experiential learning
- Case studies
- Problem based learning
- Student seminars
- Group discussions

<u>Course Contents</u> <u>MTS-140: Foundation of Mathematics(SEC-I)</u> <u>Semester-I</u>

Unit No.	Title of Unit and Contents	No. of hours
	Statements and Logic	
	1.1 Statements	
т	1.2 Statements with quantifiers	8
•	1.3 Compound Statements	
	1.4 Implications	
	1.5 Proofs in Mathematics	
	Sets, Relations, and Functions	
	2.1 Sets: Operations on sets, Family of sets, Power set, Cartesian	
	product of sets	
II	2.2 Functions: Bijective function, Composition of functions, Inverse of	15
	function, Inverse Image of sets	
	2.3 Relation: Types of relation, Equivalence relations, Equivalence	
	classes and partition of set.	
	Induction Principle	
TTT	3.1 The induction principle	
111	3.2 The strong induction principle	7
	3.3 Well-ordering principle	

Reference	1. Ajit Kumar, S. Kumaresan and B. K. Sarma, A Foundation Course in
Books	Mathematics, Narosa
	2. Robert Bartle and Donald Sherbert, Introduction to real Analysis (Fourth
	Edition), John Wiley and Sons Inc.
	3. Kenneth Rosen, Discrete Mathematics and its Applications (Seventh Edition),
	Mc Graw Hill.
E-resources	1. E-Books: https://sites.google.com/site/vvacharyanew/
	2. https://studio.youtube.com/channel/UChCsGynvfLk4g0DpgvXXvJA/videos

F. Y. B. Sc. Semester II			
MTS-151	Calculus (Major- Theory)	Number of Credits : 04	
	Course Outcomes (COs)	Bloom's	
On comp	letion of the course, the students will be able	cognitive level	
	to:		
CO1	Assimilate the notions of limit of a sequence and convergence of a series of real numbers.	1	
CO2	Calculate the limit and examine the continuity of a function at a point.	5	
CO3	Understand the consequences of various mean value theorems for differentiable functions.	2	
CO4	Sketch graphs of functions using limit, continuity and differentiability	3	
CO5	Apply derivative tests in optimization problems appearing in social sciences, physical sciences, life sciences and a other disciplines.	4	
CO6	Create functions satisfying certain geometrical properties.	6	

Suggested Pedagogical Processes

- Lecture method: Concepts and operations of sets, Matrix Algebra, Graphs, Trees on Blackboard with examples, problems on sets using Venn diagrams
- ICT supplemented teaching
- Experiential learning
- Case studies
- Problem based learning
- Student seminars
- Group discussions

MTS-151: Calculus (Major) <u>Course Contents</u> <u>Semester II</u>

Unit No.	Title of Unit and Contents	No. of
		hours
	Sequences and Series of Real Numbers	
	1.1 Introduction of real numbers, well ordering property, lub axiom,	
	density of rational numbers	10
Ι	1.2 Sequences of real numbers and convergence of sequences	
	1.3 Monotone and bounded sequences	
	1.4 Subsequences, Bolzano-Weierstrass Theorem, Cauchy sequences	
	1.5 Convergence of series of real numbers	

	Lim	it And Continuity	
	2.1	Definition of limit of a real-valued function	
	2.2	Algebra of limits	
	2.3	Limit at infinity and infinite limits	
	2.4	Sequential criteria for limit	
Π	2.5	Continuity of a real valued function	20
	2.6	Properties of continuous functions	
	2.7	Boundedness theorem, Maximum-Minimum theorem for continuous	
		functions (statements only),	
	2.8	Intermediate value theorem	
	2.9	Types of continuity: Piecewise continuity, Uniform continuity.	
	Diff	erentiability	
	3.1	Differentiability of a real-valued function, Geometrical interpretation	
		of differentiability	
	3.2	Relation between differentiability and continuity	
	3.3	Differentiability and monotonicity	
III	3.4	Chain rule of differentiation	20
	3.5	Darboux's theorem	
	3.6	Mean Value theorems: Rolle's theorem, Lagrange's mean value	
		theorem, Cauchy's mean value theorem, Geometrical interpretation of	
		mean value theorems	
	3.7	Successive differentiation, Leibnitz's theorem, L'Hospital's Rule	
	Exp	ansions of Functions	
	4.1	Maclaurin's and Taylor's theorems	
IV	4.2	Taylor's theorem in finite form with Lagrange, Cauchy forms of	10
		remainder	
	4.3	Maxima and minima.	

Reference	1. Robert Bartle, Donald Sherbert, Introduction to Real Analysis (Fourth Edition),
Books	John Wiley and Sons Inc.
	2. Michael Spivak, Calculus, Cambridge University Press.
	3. Thomas' Calculus (14 th edition), Pearson Education.
	4. Howard Anton, I. Bivens& Stephan Davis (2016). Calculus (10 th edition). Wiley
	India.
	5. Gabriel Klambauer (1986). Aspects of Calculus. Springer-Verlag.
	6. Wieslaw Krawcewicz & Bindhyachal Rai (2003). Calculus with Maple Labs.
	Narosa.
	7. Gorakh Prasad (2016). Differential Calculus (19 th edition). Pothishala Pvt. Ltd.
E-	1. E-Books: https://sites.google.com/site/vvacharyanew/
resources	2. https://studio.youtube.com/channel/UChCsGynvfLk4g0DpgvXXvJA/videos

F. Y. B. Sc. Semester II		
MTS-150	Mathematics Practical -2 (Major-Practical)	Number of Credits : 02
1	Real Numbers	
2	Sequences of Real Numbers and convergence	
3	Types of sequences and applications	
4	Convergent series of real Numbers	
5	Tests for convergence of series and Applications	
6	Limit of a functions	
7	Continuity of functions	
8	Continuous functions on Interval	
9	Differentiability of functions	
10	Mean Value theorems and applications	
11	L'Hospital's rule	
12	Successive differentiation and applications	

F.Y.B.Sc. Semester II		
MTS-161	Calculus with Sequences and Series (Minor- Theory)	Number of Credits : 02
On com	Course Outcomes (COs) pletion of the course, the students will be able to:	Bloom's cognitive level
CO1	Assimilate the notions of limit of a sequence and convergence of a series of real numbers.	1
CO2	Calculate the limit and examine the continuity of a function at a point.	2
CO3	Understand the consequences of various mean value theorems for differentiable functions.	3
CO4	Sketch curves in Cartesian and polar coordinate systems.	4
CO5	Apply derivative tests in optimization problems appearing in social sciences, physical sciences, life sciences and many other disciplines.	5
CO6	Explain the properties of limits, continuity, and differentiability.	6

MTS-161: Calculus with Sequences and Series <u>Course Contents</u>

Unit No.	Title of Unit and Contents	No. of
		hours
	Sequences and series of Real Numbers:	
	1.1 Definition of a sequence, limit of a sequence,	
	1.2 Uniqueness of limit, Bounded sequence, Tail of a sequence,	
	1.3 Algebra of limits of sequences, Squeeze theorem for sequences,	
	1.4 Ratio test for sequences, Monotone sequence, Monotone convergence	
	theorem (Statement only),	7
Ι	1.5 Subsequence's, Divergence Criteria,	
	1.6 Monotone subsequence theorem (statement only),	
	1.7 Bolzano-Weierstrass theorem (statement only),	
	1.8 Series: Definition, Sequence of partial sums,	
	1.9 Convergent series and Divergent series, n-thtem test,	
	1.10 Ratio test and root tests for convergence of series (statements and	
	examples only).	
	Limits and continuity of functions:	
	2.1 Definition of limit,	
	2.2 Limits of some standard functions,	
II	2.3 Sequential criteria for limits, Uniqueness of limit	

	2.4 Divergence criteria, Algebra of limits,	8
	2.5 Squeeze theorem for limit,	
	2.6 Sequential criteria,	
	2.7 Composition of continuous functions,	
	2.8 Continuous functions on intervals, Boundedness theorem (statement	
	only), Maximum-Minimum theorem (statement only), Location of	
	roots theorem (statement only),	
	2.9 Intermediate value theorem, Fixed point theorem, Preservation of	
	intervals theorem.	
	Derivative:	
	3.1 Definition, Differentiability imply continuity,	
	3.2 Non differentiable functions,	
	3.3 Algebra of differentiable functions,	
	3.4 Caratheodory's theorem,	
	3.5 Chain rule for derivative of composite function,	
	3.6 Derivative of inverse function.	
	3.7 Mean value theorems: Vanishing of the derivative at interiorextremum,	
	Rolle's Theorem, Lagrange's mean value theorem, Cauchy's mean value	
Ш	theorem	15
	3.8 Applications of mean value theorems to geometric properties of	
	functions, First derivative test for extrema, Second derivative test for	
	extrema, Derivative test for convexity, Intermediate value property for	
	derivative, Darboux's theorem	
	3.9 Successive differentiation: n-th derivative of some standard functions,	
	Leibnitz's theorem for n-th derivative, Applications of Leibnitz's	
	theorem.	
	3.10 Indeterminate forms, L' Hospital's Rule	
	3.11 Taylor's theorem, Maclaurin's theorem, Applications of Taylor's	
	Theorem.	

Reference	1. Howard Anton, I. Bivens& Stephan Davis (2016). Calculus (10th edition), Wiley
Books	India.
	2. <i>Thomas' Calculus</i> (14 th edition). Pearson Education.
	3. Gabriel Klambauer (1986). Aspects of Calculus, Springer-Verlag.
	4. WieslawKrawcewicz&Bindhyachal Rai (2003). Calculus with Maple Labs.
	Narosa.
	5. Gorakh Prasad (2016). Differential Calculus (19th edition). Pothishala Pvt. Ltd.
	6. Robert G. Bartle, Donald R. Sherbert, Introduction to Real Analysis, John Wiley
	&Sons, Fourth Edition, 2011.

F.Y.B.Sc. Semester II		
MTS-162	Mathematics Practical -2 (Major-Practical)	Number of Credits: 02
1	Convergence of Sequences	
2	Monotone sequences	
3	Subsequences and Cauchy sequences	
4	Series and convergence	
5	Limit of a function	
6	Sequential Criteria for limit	
7	Continuity of functions	
8	Applications of Continuity on intervals	
9	Differentiable functions	
10	Mean Value theorems	
11	Applications of Mean Value theorems	
12	Successive Differentiation and L'Hospital's Rule and Taylo	or's Theorem

F. Y. B. Sc. Semester II		
MTS-163	Calculus and Differential Equations (Minor- Theory)	Number of Credits: 02
O	Course Outcomes (COs) n completion of the course, the students will be able to:	Bloom's cognitive level
CO1	Understand and learn functions and their properties.	1
CO2	Familiarize and learn to evaluate limit of function and study continuity.	2
CO3	Employ the rules of derivatives	3
CO4	Recognize basic applications of derivatives.	4
CO5	Evaluating differential equations.	6

MTS-163: Calculus and Differential Equations (Physical Sciences) <u>Course Contents</u> <u>Semester II</u>

Unit No.	Title of Unit and Contents	No. of hours
	Functions	
	Functions and their graphs	
Ι	1.1 Combining functions	4
	1.2 Shifting and scaling graphs	
	1.3 Trigonometric functions	
	Limit and Continuity	
	2.1 Rates of change and tangents lines to curves	
	2.2 Limit of functions	
	2.3 Limit laws	
II	2.4 The precise definition of limit	6
	2.5 One-sided limits	
	2.6 Continuity	
	2.7 Limits involving infinity	
	2.8 Asymptotes of graph	
	Derivatives	
	3.1 Tangent lines and derivative at a point	
	3.2 The derivative as a function	
	3.3 Differentiation rules	
III	3.4 The derivative as rate of change	6
	3.5 The derivative of trigonometric functions	
	3.6 The chain rule	
	3.7 Implicit differentiation	
	3.8 Linearization and differentials	
	Application of Derivatives	
137	4.1 Extreme values of a function on closed interval	6
1 V	4.2 The Mean Value Theorem	
	4.3 Monotonic Functions and First Derivative Test	
	4.4 Concavity and Curve sketching	
	4.5 Applied Optimization	
	4.6 Newton's Method	
	4.7 Antiderivatives	
	First Order Differential Equations	
	5.1 Solutions, Slope Fields and Euler's Method	
N/	5.2 First Order Linear Equations	
v	5.3 Orthogonal Trajectories	8
	5.4 Autonomous Equations	
	5.5 Graphical Solutions of Autonomous Equations	

Reference	1. George B Thomas Jr., Joel Hass, Christofer Heil & Maurice D. Weir (2018), Thomas's
Books	Calculus (14 th Edition), Pearson Education.
	2. Howard Anton, Irl Bivens, Stephen Davis, Calculus, John Wiley & Sons, inc.
	3. James Stewart, Calculus, Cengage Learning
	4. W. W. Sawyer, What is Calculus about? The Mathematical Association of America,
	New Mathematical Library.

F.Y.B.Sc. Semester II			
MTS-164	Mathematics Practical -2 (Minor-Practical)	Number of Credits: 02	
	Course Outcomes (COs)		
	On completion of the course, the students will be able to:		
1	Functions and Graphs		
2	Evaluation of Limit of a function		
3	Applications of concept of limit		
4	Continuous Functions		
5	Applications of Continuity		
6	Differentiable functions		
7	Implicit Differentiation and Linearization		
8	Mean Value Theorems and Applications		
9	Applications to Optimization, Newtons Method and Antide	rivative	
10	Solving first order equations		
11	Orthogonal Trajectories		
12	Solving Autonomous equations		

F.Y.B.Sc. Semester II			
MTS-165	Graph Theory (Minor Theory for CS)	Number of Credits : 02	
On co	Bloom's cognitive Levels		
CO1	Understand the basic concepts of graph theory, including graphs, vertices, edges, and degrees.	1	
CO2	Demonstrate problem-solving skills by using graph theory to solve practical problems.	2	
CO3	Discuss and apply graph isomorphism and subgraph concepts.	3	
CO4	Analyze and apply graph representations, including adjacency matrices and edge incidence matrices.	4	
CO5	Evaluate properties of graphs, including Eulerian and Hamiltonian paths/cycles, using different algorithms.	5	
CO6	Apply various graph algorithms, such as Dijkstra's algorithm, Kruskal's algorithm.	6	

	Title of Unit and Contents	No. of
		hours
Ι	Introduction to Graphs and Operations on Graphs	4
	1.1 Definition and examples of graph, degree of a vertex, Hand shaking	
	lemma and it's corollaries.	
	1.2 Types of graphs: Simple graph, Complete	
	graph, bipartite graph, Regular graph, Null graph.	
	1.3 Isomorphism of graphs .	
	1.4 Adjacency and Incidence Matrix of a	
	Graph.	
	1.5 Vertex induced subgraph, Edge induced subgraph, Vertex deleted	
	subgraph, Edge deleted subgraph.	
	1.6 Union of two graphs, Intersection of two	
	graphs, Product of two graphs, Ring Sum of	
	two graphs.	
	1.7 Fusion of vertices, Complement of a graph.	
	Connected Graphs	8
	2.1 Walk, Trail, Path, Cycle: Definitions and	
	elementary properties.	
п	2.2 Connected Graphs: definition and properties.	
	2.3 Distance between two vertices, eccentricity,	
	centre, radius and diameter of a graph.	
	2.4 Isthmus, Cut vertex : Definition and	
	properties.	

	2.5 Cutset, edge connectivity, vertex connectivity.	
	2.6 Weighted Graph and Dijkstra's Algorithm.	
	Eulerian and Hamiltonian Graphs	3
	3.1 Seven Bridge Problem,	_
	Eulerian Graph: Definition and Examples.	
	Necessary and Sufficient condition.	
III	3.2 Fleury's Algorithm.	
•••	3.3 Hamiltonian Graph : Definition and	
	Examples, Necessary Condition.	
	3.4 Introduction to Chinese Postman Problem	
	and Travelling Salesman Problem.	
	Trees	8
	4.1 Definition, Properties of trees.	
	4.2 Centre of a tree.	
IV	4.3 Binary Tree : Definition and properties.	
1 V	4.4 Tree Traversal.	
	4.5 Spanning Tree : Definition, Properties,	
	Shortest Spanning Tree, Kruskal's Algorithm.	
	Directed Graphs	7
	5.1 Definition, Examples, Elementary	
V	Terminologies and properties.	
	5.2 Special Types of Digraphs.	
	5.3 Connectedness of digraphs.	
	5.4 Network and Flows: definition and examples.	

References:

- 1) 'Graph Theory with applications to Engineering and Computer Science', D Narsingh, Prentice Hall publication.
- 2) 'A first look at Graph Theory', John Clark, Derek Allen Holton, Allied Publikashers Ltd.

MTS165: Mathematical Foundation for Computer Science <u>Course Contents</u> <u>Semester-II</u>

Unit No.	Title of Unit and Contents	No. of hours
Ι	Statements and Logic	
	1.1 Statements	
	1.2 Statements with quantifiers	4
	1.3 Compound Statements	
	1.4 Implications	
	1.5 Proofs in Mathematics	
	Sets, Relations and Functions	
	2.1 Sets, Operations on Sets, Power Set, Cartesian product of	
	Sets, Graphical representation of sets	
	2.2 Relations, types of Relations.	
Π	2.3 Equivalence relations.	
ш	2.4 Partition of a set and equivalence classes.	8
	2.5 Digraphs of relations, matrix representation and composition	
	of Relations.	
	2.6 Transitive closure and Warshall's Algorithm.	
	2.7 Types of functions (One - One, Onto, Bijective).	
	Lattice and Boolean Algebra	
	3.1 Partial ordering relations	
	3.2 Poset, Hasse diagram.	
тт	3.3 Lattices, Complemented lattice, Bounded lattice and	
111	Distributive Lattice.	7
	3.4 Boolean variable, Boolean Function of degree n, Boolean	
	identities, Definition of Boolean Algebra.	
	3.5 Disjunctive Normal form, Conjunctive Normal form.	
	Counting Principles	
	4.1 Cardinality of a finite set.	
IV	4.2 The Sum Rule, the Product Rule, the Inclusion-Exclusion	3
	Principle.	
	4.3 Statement of Pigeonhole Principle, Its Applications.	
	Recurrence Relation	
	5.1 Introduction to Recurrence Relations, Formation.	8
N7	5.2 Linear Recurrence Relations with constant coefficients.	
v	5.3 Homogeneous Solutions.	
	5.4 Particular Solutions.	
	5.5 Total Solutions.	

Reference Books	2	Kenneth Rosen, 'Discrete Mathematics and its applications', Seventh
		Edition by Tata McGraw Hill.
	3	Kolman, Busby, Ross, Rehman, 'Discrete Mathematical Structures',
		Sixth edition, by Prentice Hall.
	4	C. L. Liu, 'Elements of Discrete Mathematics', Fourth edition, by Tata
		McGraw Hill.

F.Y.B.Sc. Semester II			
MTS-166	Mathematics Practical – 2	Number of	
	(Minor- Practical for CS)	Credits: 02	
Unit No.	Title of Unit and Contents		
1	Introduction to Graph		
2	Connected Graphs.		
3	Eulerian and Hamiltonian Graphs		
4	Trees.		
5	Directed Graphs.		
6	Solution to ODE by Euler's Method (By Scilab).		
7	Solution to ODE by Runge-kutta of 2 nd order (By Scilab).		
8	Solution to ODE by Runge-kutta of 4 th order (By Scilab).		
9	Newton's Forward Interpolation (Using Scilab)		
10	Newton's Backward Interpolation (Using Scilab)		
11	Newton's Divided Interpolation (Using Scilab)		
12	Lagrange's Interpolation (Using Scilab)		
13	Student Activity –I		
14	Students Activity – II		
15	Students Activity – III		

MTS166: Mathematical Foundation for Data Science <u>Course Contents</u> <u>Semester-II</u>

Unit No.	Title of Unit and Contents	No. of hours
	Statements and Logic	
	1.1 Statements	
Ι	1.2 Statements with quantifiers	4
	1.3 Compound Statements	
	1.4 Implications	
	1.5 Proofs in Mathematics	
	Matrices	
π	2.1 Matrix Operations.	
11	2.2 The Inverse of a Matrix.	4
	2.3 Characterization of invertible matrices.	
	System of Linear Equations	
	3.1 System of Linear equations.	
III	3.2 Elementary Row operations and echelon forms.	6
	3.3 Solution set of linear systems.	
	3.4 Matrix factorization [LU decomposition]	
	Permutation and Combinations	
	4.1 Cardinality of a finite set.	
	4.2 The Product Rule, the Sum Rule, the Inclusion-Exclusion	
IV	Principle.	8
	4.3 Statement of Pigeonhole Principle, Its Applications.	
	4.4 Introduction to Permutations and Combinations.	
	4.5 Permutation and Combination with Repetitions.	
	Basics of Probability	
	5.1 Sample space, Discrete sample space: finite and countably	
	infinite.	
\mathbf{V}	5.2 Concept of occurrence of an event. Algebra of events.	
·	5.3 Definition of conditional probability of an event.	8
	5.4 Definition of independence of two events.	
	5.5 Multiplication theorem.	
	5.6 Application of Bayes' Theorem	

0	
Reference Books	1. Howard Anton and Chris Rorres, 'Elementary Linear Algebra with
	Supplemental Applications', eleventh edition, Wiley Student Edition.
	2. Kanti Bhushan Datta, 'Matrix and Linear Algebra (aided with
	MATLAB)', Third Edition, Eastern Economic Edition.
	3. S. C. Gupta and V. K. Kapoor, 'Fundamentals of Mathematical
	Statistics', Eighth Edition, Sultan Chand and Sons Publishers, New
	Delhi.

F. Y. B. A. Semester II			
MTS-169	Industrial Mathematics –II	Number of	
	(Minor-Theory for BA)	Credits : 02	
C	Course Outcomes (COs) On completion of the course, the students will be able to:	Bloom's cognitive level	
CO1	Understand the basics of matrix algebra.	1	
CO2	Familiarize the matrix operations .	5	
CO3	Compute the integration of the function.	2	
CO4	Analyze the applications of integral in economics.	3	
CO5	Check the Optimal solution.	4	
CO6	Find the graphical solution.	6	

MTS-169: Industrial Mathematics-II <u>Course Contents</u> <u>Semester II</u>

Unit No.	Title of Unit and Contents	No. of
		hours
	The Fundamentals of Linear Algebra:	
	1.1 The Role of Linear Algebra	
	1.2 Definitions and Terms	
	1.3 Addition and Subtraction of Matrices	
т	1.4 Scalar Multiplication	8
1	1.5 Vector Multiplication	
	1.6 Multiplication of Matrices	
	1.7 Commutative, Associative and Distributive Laws in Matrix Algebra	
	1.8 Identity and Null Matrices	
	1.9 Matrix Expression of a system of Linear Equations	
	Integral Calculus- The Indefinite Integral:	
	2.1 Integration	
	2.2 Rules of Integration	
II	2.3 Initial Conditions and Boundary Conditions	8
	2.4 Integration by Substitution	
	2.5 Integration by Parts	
	2.6 Economic Applications	
III	Integral Calculus-The Definite Integral:	
	3.1 Area Under a Curve	
	3.2 The Definite Integral	
	3.3 The Fundamental Theorem of Calculus	8
	3.4 Properties of definite Integrals	

	3.5 Area between Curves		
	3.6 Improper Integrals		
	3.7 Present Value of Cash Flows		
	3.8 Consumer's and Producer's Surplus		
IV	Linear Programming:		
	4.1 A Graphical Approach		
	4.2 Graphical Solutions		
	4.3 The Extreme Point Theorem	6	
	4.4 Slack and Surplus Variables		
	4.5 The Basis Theorem		

Text Book	 Alpha C. Chiang, Kevin Wainwright, Fundamental Methods of Mathematical Economics Knut Sydsaester and Peter Hammond with Arne Strom Essential Mathematics for Economic Analysis, Pearson. Edward Dowling, Introduction to Mathematical Economics, Schaum's Outline Series
Reference	1. Christopher J. Stocker, Michael R. Ziegler, Karl E. Byleen, Raymond A. Barnett,
Books	College Mathematics for Business, Economics, Life Sciences, and Social Sciences
	2. Carl P. Simon, Lawrence Blume Mathematics for Economists.

F.Y.B.Sc. Semester II		
MTS-170	Introduction to Applied Mathematics (OE-3)	Number of Credits: 02
O	Course Outcomes (COs) n completion of the course, the students will be able to:	Bloom's cognitive level
CO1	Recall the graphs and equation of the line.	1
CO2	Study graphical representation of the lines and their solution.	2
CO3	Compute the addition and multiplication of matrices.	3
CO4	Solve the system of linear equations.	4
CO5	Discuss the solution of the system of linear equations.	5
CO6	Decide linear programming problem is optimized or not using graphical method.	6

MTS-170: Introduction to Applied Mathematics (OE-III) <u>Course Contents</u> <u>Semester II</u>

Unit No.	Title of Unit and Contents	No. of hours
	The Fundamentals of Linear Algebra:	
	1.1 The role of linear algebra,	
	1.2 Addition and subtraction of matrices,	
	1.3 Scalar multiplication, vector multiplication,	
	1.4 Multiplication of matrices,	
Ι	1.5 Commutative, associative and distributive laws in matrix algebra,	10
	1.6 Identity and Null matrices,	
	1.7 Matrix expression of a system of linear equations,	
	1.8 Row operations,	
	1.9 Augmented matrix,	
	1.10 Gaussian method of solving linear equations	
	Matrix Inversion:	
	2.1 Determinants and Non-singularity	
	2.2 Third-order Determinants	
	2.3 Minors and Cofactors	
П	2.4 Laplace Expansion and Higher-order Determinants	
	2.5 Properties of a Determinant	10
	2.6 Cofactor and Adjoint Matrices	
	2.7 Inverse Matrices	
	2.8 Solving Linear Equations with the inverse	
	2.9 Cramer's Rule for Matrix Solutions and The Gaussian Method of	
	Inverting a Matrix.	
	Modelling with Linear Programming	
III	3.1 Two variable LP Model	10
	3.2 Graphical LP solution,	10
	3.3 Selected LP Applications,	
	5.4 Graphical Sensitivity analysis	

Reference	1. Christopher J. Stocker, Michael R. Ziegler, Karl E. Byleen, Raymond A.
Books	BarnettCollege Mathematics for Business, Economics, Life Sciences, and Social
	Sciences, Pearson
	2. Edward Dowling, Introduction to Mathematical Economics, Schaum's Outline
	Series.
	3. Alpha C. Chiang, Kevin Wainwright Fundamental Methods of Mathematical
	Economics
	4. Frank Ayres, Mathematics of Finance, Schaum's Outline Series.
	5. Carl P. Simon, Lawrence Blume Mathematics for Economists.
	6. Knut Sydsaester and Peter Hammond with Arne Strom Essential Mathematics for
	Economic Analysis, Pearson.
	7. J. K. Sharma, Operations Research (Theory and Applications, second
	edition,2006),Macmillan India Ltd.
	8. Hira and Gupta, Operations Research.

F.Y.B.Sc. Semester II		
MTS-171	Introduction to Quantitative and Logical Thinking-II (OE-4)	Number of Credits: 02
	Course Outcomes (COs)	Bloom's
On completion of the course, the students will be		cognitive
	able to:	level
CO1	Understand basic concepts Polynomials, Quadratic equations	1
CO2	Familiarize basic concepts of simple and compound interest.	2
CO3	Interpret the Venn diagram	3
CO4	Solve the problems on Clock Train and Calendar.	4
CO5	Analyze the problems on Heights and Distances	5
CO6	Construct the Venn diagram.	6

MTS-171: Introduction to Quantitative and Logical Thinking-II (OE-IV) <u>Course Contents</u> <u>Semester II</u>

Unit No.	Title of Unit and Contents		
I	 1.1 Algebra of Polynomials 1.2 Quadratic Equations 1.3 Partnership 1.4 Simple Interest. 1.5 Compound Interest 	10	
Ш	 2.1 Time and Work 2.2 Work and Wages 2.3 Pipes and Cistern 2.4 Allegation 2.5 Problems on Trains 	10	
Ш	 3.1 Problems on Clock 3.2 Problems on Calendar 3.3 Time and Distances 3.4 Heights and Distances 3.5 Set and Venn Diagram 	10	

Reference	1.	R. V. Praveen, Quantitative Aptitude and Reasoning
Books	2.	Dinesh Khattar, Quantitative Aptitude for Competitive Examinations-Pearson
		Education (2020)
	3.	R.S. Aggarwal Quantitative AptitudePHI Learning Pvt. Ltd.