

Fergusson College (Autonomous), Pune

Learning Outcomes-Based Curriculum

for 3/4 years B. Sc. /B. Sc. (Honours) Programme

as per guidelines of

NEP-2020

for

F.Y B. Sc. (Computer Science)

With effect from Academic Year

2023-2024

	Programme Outcomes for B. Sc. Programme
PO1	Disciplinary Knowledge: Demonstrate comprehensive knowledge of the disciplines that form a part of a graduate programme. Execute strong theoretical and practical understanding generated from the specific graduate programme in the area of work.
PO2	Critical Thinking and Problem solving: Exhibit the skills of analysis, inference, interpretation and problem-solving by observing the situation closely and design the solutions.
PO3	Social competence: Display the understanding, behavioural skills needed for successful social adaptation, work in groups, exhibits thoughts and ideas effectively in writing and orally.
PO4	Research-related skills and Scientific temper: Develop the working knowledge and applications of instrumentation and laboratory techniques. Able to apply skills to design and conduct independent experiments, interpret, establish hypothesis and inquisitiveness towards research.
PO5	Trans-disciplinary knowledge: Integrate different disciplines to uplift the domains of cognitive abilities and transcend beyond discipline-specific approaches to address a common problem.
PO6	Personal and professional competence: Performing dependently and also collaboratively as a part of team to meet defined objectives and carry out work across interdisciplinary fields. Execute interpersonal relationships, self-motivation and adaptability skills and commit to professional ethics.
PO7	Effective Citizenship and Ethics: Demonstrate empathetic social concern and equity centered national development, and ability to act with an informed awareness of moral and ethical issues and commit to professional ethics and responsibility.
PO8	Environment and Sustainability: Understand the impact of the scientific solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.
PO9	Self-directed and Life-long learning: Acquire the ability to engage in independent and life-long learning in the broadest context of socio-technological changes.

l

Ē

PSO No.	Program Specific Outcomes (PSOs)		
	Upon completion of this programme the student will be able to		
PSO1	Academic Competence:		
	(i) Understand various concepts of Computing, Statistics, Mathematics and		
	Electronics appropriately to the discipline.		
DCOA	(ii) Recommend computing solutions to solve the problems in different domains		
PSO2	Personal and Professional Competence: (i) Apply the fundamental knowledge for professional software development as		
	well as to acquire new skills.		
	(ii) Develop strong problem solving, analyzing and decision-making abilities.		
	Identify the information and apply their disciplinary knowledge and professional		
	skills to design components, system or processes to meet required specification		
PSO3	Research Competence:		
	(i) Apply programming languages, tools and techniques to conduct research and		
	demonstrate appropriate emerging skills to seek solutions to problems in various		
	interdisciplinary fields.		
	(ii) Integrate Computer Science, Electronics, Mathematical and Statistical		
	knowledge to explore different domains' data for experimental and research		
DCOA	purpose		
PSO4	Entrepreneurial and Social Competence: (i) Use the knowledge and skills necessary to support their career in software		
	development, web development, databases and entrepreneurship in recent trends		
	like data analytics, artificial intelligence, Image processing, Networking,		
	Embedded systems etc.		
	(ii) Develop software based solutions for industry as well as research and		
	development and develop skills required for social interaction.		

Fergusson College (Autonomous), Pune Proposed First Year Curriculum as per NEP 2020 Department of Computer Science Structure for Major / Minor

Semester	Paper	Paper Code	Paper Title	Туре	Credits	
	Major	CSC-101	Problem Solving Principles Using C	Theory	4	
		CSC-100	Computer Science Practical -1	Practical	2	
	OE-1	CSC-120	IT Literacy	Theory	2	
	OE-2	CSC-121	Basics of Linux	Theory	2	
	2.4	MTS-115	Foundation of Mathematics	Theory	2	
	Minor	MTS-116	Mathematics Practical – 1	Practical	2	
I			OR	<u>.</u>		
	Minor	ELS- 115	Basic Digital Electronics	Theory	2	
		ELS- 116	Electronics Practical – 1	Practical	2	
			OR			
	Minor	STS-115	Fundamental of Statistics	Theory	2	
		STS-116	Statistics Practical - 1	Practical	2	
	SEC	CSC-140	Basics of Databases	Skill	2	
	Major	CSC-151	Relational Database Management System	Theory	4	
		CSC-150	Computer Science Practical – 2	Practical	2	
	OE-3	CSC-170	Data Handling using Excel	Theory	2	
	OE-4	CSC-171	Web Page Designing	Theory	2	
	Minon	MTS-165	Graph Theory	Theory	2	
п	Minor	MTS-166	Mathematics Practical - 2	Practical	2	
	OR					
	Minor	ELS- 165	Sequential Logic Circuits	Theory	2	
	Ινπηομ	ELS- 166	Electronics Practical – 2	Practical	2	
	OR					
	Minor	STS-165	Introduction to Probability and Statistics	Theory	2	
		STS-166	Statistics Practical –2	Practical	2	

* OE – Open Elective, SEC- Skill Enhancement Course

Course Credits	No. of Hours per Semester Theory/Practical	No. of Hours per Week Theory/Practical	Maximum Marks	CE 40 %	ESE 60%
1	15 / 30	1 / 2	25	10	15
2	30 / 60	2 / 4	50	20	30
3	45 / 90	3/6	75	30	45
4	60 / 120	4 / 8	100	40	60

Teaching and Evaluation (Only for FORMAL education courses)

F.Y B.Sc (Computer Science) – Semester I			
CSC-101	Problem Solving Principles using C (Major- Theory)	Credits: 04 Hours : 60	
	Course Outcomes (COs) On completion of the course, the students will be able to:	Bloom's cognitive level	
CO1	Identify and define appropriate solutions to problems in the field of computer science and other related disciplinary areas.	1	
CO2	Illustrate the solutions to the problems in the form of simple algorithms and flowcharts	2	
CO3	Apply various computer programming language concepts and strategies to write and execute efficient and structured computer programs	3	
CO4	Analyze and compile the programs to detect any errors, debug and correct the programs.	4	
CO5	Test and perform critical evaluation of the program outcome to validate the program logic.	5	
CO6	Integrate the concepts of control structures, functions, arrays, pointers and strings to create more complex programming solutions	6	

Unit	Contents	No. of Hours
I	Problem Solving Principles What is Problem Solving? Problem solving using computer Algorithm Flowchart 	04
II	 Introduction to Programming Languages 2.1 Computer Software and Classification 2.2 Computer Languages: Machine Language, Assembly Language, High-Level Language 2.3 Compiler and Interpreter 	02
ш	Overview of C 3.1 History of C 3.2 Features of C 3.3 Structure of a C Program 3.4 C Program Development Lifecycle 3.5 First C Program 3.6 Applications of C	03

F.Y.B. Sc. - I (Computer Science)

Pattern 2023

	F.Y.B. Sc I (Computer Science)	Pattern 2023
	Fundamentals of C	10
	4.1 Character Set in C	
	4.2 C Tokens	
	4.3 Keywords, Identifiers, Variables	
TX 7	4.4 Constants: Integer, Character, Float	
IV	•	
	4.5 Datatypes	
	4.6 Operators, Precedence and Associativity of Operators	
	4.7 Input and Output operations	
	4.8 Escape Sequences	
	Decision Making: Branching and Looping	12
	5.1 Introduction to Decision Making	
	5.2 Branching Statements	
	5.3 Simple if statement	
	a. ifelse statement	
	b. nested ifelse	
	c. elseif ladder	
V	d. switch-case	
·	5.4 Conditional operator	
	5.5 Looping Statements	
	5.6 while statement	
	5.7 dowhile statement	
	5.8 for loop	
	5.9 Nested loops	
	5.10 Jump Statements: break, continue, goto, exit()	
	Functions	10
	6.1 What is function?	10
	6.2 Advantages of functions	
	6.3 Standard Library Functions	
VI	6.4 User-defined functions: Declaration, Definition,	
V I	Function call, parameter	
	6.5 Passing	
	6.6 return statement	
	6.7 Scope of variables	
	6.8 Storage Classes	
	6.9 Recursion	07
	Arrays 7.1 What is an array?	07
VII	7.2 Types of array: One Dimensional, Two-Dimensional, Multi-Dimensional	
V II		
	7.3 Array declaration, initialization, accessing array elements	
	7.4 Passing array to function	07
	Pointers 8.1 Pointer declaration initialization Dereferencing	07
	8.1 Pointer declaration, initialization, Dereferencing	
	pointers, Pointer arithmetic	
VIII	8.2 Pointer to pointer, Arrays and pointers, Array of	
	Pointers	
	8.3 Functions and pointers – passing pointers to functions,	
	function returning pointers	
	8.4 Dynamic memory allocation	
	Strings	05
	9.1 Declaration and initialization	
IX	9.2 String input/output, format specifiers	
	9.3 Standard library functions	
	9.4 Strings and pointers, Array of strings	
	9.5 Command Line Arguments]

- 1. Behrouz A. Forouzan and Richard F. Gilberg: Computer Science: A Structured Programming Approach using C Third Edition, Thomson Course Technology publication
- 2. Brian W. Kernighan and Dennis M. Ritchie: The C Programming Language, Second Edition, Prentice Hall Publication
- 3. Byron S Gottfried, Schaum's Outlines Programming With C, Second Edition, Tata McGraw Hill
- 4. Yashavant Kanetkar: Let Us C, Seventh Edition, PBP Publications
- 5. E Balagurusamy: Programming in ANSI C, Fourth Edition, TMH

	F.Y B. Sc (Computer Science) – Semester I			
CSC-100	Computer Science Practical -1 (Major-Practical)	Credits : 02 Hours : 60		
	Course Outcomes (COs)	Bloom's		
	On completion of the course, the students will be able to:	cognitive level		
CO1	Define algorithms and flowcharts for given problems in C programming.	1		
CO2	Illustrate the use of simple data types, operators and control structures in C programming.	2		
CO3	Implement various standard library and execute the dynamic memory management techniques using the concept of pointers	3		
CO4	Divide the programs into separate modules by writing user defined functions	4		
CO5	Evaluate the programs to test and validate the output	5		
CO6	Design and write programs to implement the concepts of functions, arrays, pointers and strings in C programming	6		

Sr. No.	Title of Experiment / Practical
1.	Defining algorithms and flowcharts for a given problem statements
2.	Use of data types, simple operators
3.	Decision making statements (if-else and switch case)
4.	Use of loops
5.	Use of Nested Loops
6.	Menu driven programs using Standard Library Functions
7.	Use of User Defined Functions
8.	Recursive functions
9.	Use of Arrays
10.	Use of pointers
11.	Concept of strings, array of strings and String operations using pointers
12.	Case Study

	F.Y B.Sc (Computer Science) – Semester I			
CSC-120	IT Literacy (OE-1 Theory)	Credits: 02 Hours: 30		
	Course Outcomes (COs) On completion of the course, the students will be able to:	Bloom's cognitive level		
CO1	State the characteristics of computer and identify the components of computer system.	1		
CO2	Understand various office tools and strategies to execute efficient and structured office work.	2		
CO3	Classify types of computer software, computer generations.	3		
CO4	Explain about internet and email management.	4		
CO5	Select and use the appropriate software application to complete a particular task such as a word Processing skills.	5		
CO6	Develop the strong ability and execute the collaborative work using google drive.	6		

Unit	Contents	No. of Hours
I	Computer Basics	04
	1.1 Introduction to computer	
	1.2 Characteristics of computer	
	1.3 Computer generations	
	1.4 Basic operation of computer	
	1.5 Block diagram of Computer	
	1.6 Computer software	
II	Office tools	08
	2.1 Introduction	
	2.2 Objective	
	2.3 Word Processing Basics	
	2.4 Opening Word Processing Package	
	2.5 Title Bar, Menu Bar, Toolbars & Sidebar	
	2.6 Creating a New Document	
	2.7 Opening and Closing Documents	
	2.8 Save and Save As, Print Document	
	2.9 Using The Help	
	2.10Page Setup, Print Preview, Printing of Documents,	
	PDF file and Saving a Document as PDF file	
	2.11Document manipulation & Formatting, Text	
	Selection, Cut, Copy and Paste, Font, Color, Style	
	and Size selection, Alignment of Text, Undo &	
III	Redo, Spelling & Grammar, Shortcut Keys Basics of Internet	06
111		VO
	3.1 Introduction, Objectives3.2 Internet & WWW	
	3.3 Website Address and URL	
	3.4 Applications of Internet	
	3.5 Modes of Connecting Internet (Hotspot, Wi-Fi, LAN	

Pattern 2023

	1	
	Cable, Broadband, USB Tethering) 3.6 Popular Web Browsers (Internet Explorer/Edge,	
	Chrome, Mozilla Firefox etc)	
	3.7 Exploring the Internet	
IV	e-mail	06
	4.1 Introduction to Gmail Window	
	4.2 How to add contacts (E-Mail)/Edit contacts	
	4.3 Details of Compose dialog box fields- To, CC,	
	BCC, Subject etc., Compose an e-mail, add	
	attachment and add signature, How to add more	
	than one recipients at a time (from excel	
	file)+Comma, Separated list(notepad)	
	4.4 e-mail Formatting	
	4.5 How to send Reply/Forward the mail	
	4.6 e-mail Settings: download (set directory/drive other	
	than C drive), signature etc. Inbox: all options	
	4.7 Managing E-mail	
V	Collaborative work using Drive	06
	5.1 Folder(Creating new Folder)	
	5.2 File Upload, Folder Upload,	
	5.3 Creating, sharing and collaborative working with :	
	Google Sheet and Google Doc, Google Form	

Learning Resources:

1. P.K. Sinha, "Computer Fundamentals", BPB publications, 8th Edition

2. MICROSOFT WORD & POWERPOINT FOR BEGINNERS & POWER USERS 2021: The Concise Microsoft Word & PowerPoint A-Z Mastery Guide for All Users Paperback – May 11, 2021by Tech Demystified (Author)

e- Resources:

- 1. https://support.microsoft.com/
- 2. <u>http://nptel.ac.in</u>
- 3. <u>https://swayam.gov.in</u>

F.Y B.Sc (Computer Science) – Semester I		
CSC-121	Basics of Linux	Credits : 02
	(OE- 2 Theory)	Hours: 30
	Course Outcomes (COs)	Bloom's
	On completion of the course, the students	cognitive level
	will be able to:	
CO1	Identify the basics of Unix and features of Linux Operating system.	1
CO2	Understand the concepts of vi editor and basic Linux commands.	2
CO3	Apply the knowledge of Linux commands.	3
CO4	Integrate the concepts of Linux installation.	4
CO5	Test the commands to identify the users and manage permissions.	5
CO6	Develop the strong ability to use the Linux commands.	6

Unit	Contents	No. of Hours
I	Overview of Unix and Linux Operating System	04
	1.1 Introduction	
	1.2 History of Linux	
	1.3 Features of Linux	
	1.4 Linux Architecture	
	1.5 What is Linux?	
	1.6 Log in, Log out, Change password	
II	Basics about Linux installation	06
	2.1 System configuration	
	2.2 Configure and manage local storage	
	2.3 Create and configure file systems	
	2.4 Mounting external device	
	2.5 Setting folder and file permissions	
III	Working with Basic Linux Commands	10
	3.1 vi editor – command mode, insert mode, replace mode	
	3.2 Deleting character or line	
	3.3 Copying line, replacing characters	
	3.4 Searching particular line, line number	
	3.5 Save or abort the file in vi	
IV	3.6 Commands such as date, mkdir, chdir, cd, rmdir, cat	10
1 V	Shell Interface and commands at shell prompt 4.1 cp, mv, rm, pwd, wc, grep, yppasswd, cal, clear	10
	utility	
	4.2 File creation at prompt	
	4.3 Appending file at prompt	
	4.4 Overwriting the contents of file	

- 1. Daniel J. Barrett, Linux Pocket Guide: Essential Commands, "O'Reilly Media, Inc.", 2016
- 2. Wale Soyinka, Linux Administration: A Beginner's Guide 7th Edition

- 3. Jason Cannon, Linux Administration, CreateSpace Independent Publishing Platform
- 4. Stephen Figgins, Linux in a Nutshell: A Desktop Quick Reference

e-resouces:

1. <u>https://www.tutorialspoint.com/unix/index.htm</u>

MTS -	Foundation of Mathematics	Credits : 02
115	(Minor Theory)	Hours: 30
	Course Outcomes (COs)	Bloom's
	On completion of the course, the	cognitive level
	students will be able to:	
CO1	Recall the fundamentals of logic and operands.	1
CO2	Discuss concepts of relation and functions.	2
CO3	Apply the counting principle on real life situations.	3
CO4	Explain different methods of mathematical proofs by using logical reasoning	4
CO5	Determine the solutions of recurrence relations.	5
CO6	Integrate basic concepts of logic, Recurrence and counting principles.	6

Unit No.	Title of Unit and Contents	No. of hours
Ι	Statements and Logic	05
	1.1 Statements	
	1.2 Statements with quantifiers	
	1.3 Compound Statements	
	1.4 Implications	
	1.5 Proofs in Mathematics	
Π	 Sets, Relations and Functions 2.1 Sets, Operations on Sets, Power Set, Cartesian product of Sets, Graphical representation of sets 2.2 Relations, types of Relations. 2.3 Equivalence relations. 2.4 Partition of a set and equivalence classes. 2.5 Digraphs of relations, matrix representation and composition of Relations. 2.6 Transitive closure and Warshall's Algorithm. 2.7 Types of functions (One – One, Onto, Bijective). 	10
III	 Counting Principles 3.1 Cardinality of a finite set. 3.2 The Sum Rule, the Product Rule, the Inclusion- Exclusion Principle. 	05

	F.Y.B. Sc I (Computer Science)	Pattern 2023
	3.3 Statement of Pigeonhole Principle, Its Applications.	
IV	 Recurrence Relation 4.1 Introduction to Recurrence Relations, Formation. 4.2 Linear Recurrence Relations with constant coefficients. 4.3 Homogeneous Solutions. 4.4 Particular Solutions. 4.5 Total Solutions. 	10

References:

- 1. Kenneth Rosen, 'Discrete Mathematics and its applications', Seventh Edition by Tata McGraw Hill.
- 2. Kolman, Busby, Ross, Rehman, 'Discrete Mathematical Structures', Sixth edition, by Prentice Hall.
- 3. C. L. Liu, 'Elements of Discrete Mathematics', Fourth edition, by Tata McGraw Hill.

F.Y B. Sc (Computer Science) – Semester I		
MTS-116	Mathematics Practical – 1 (Minor- Practical)	Credits : 02 Hours : 60
students will b	On completion of the course, the be able to:	Bloom's cognitive level
CO1	Identify basic commands of scilab	1
CO2	Represent 2D and 3D graphs using scilab.	2
CO3	Implement the fundamentals of logic and operands.	3
CO4	Analyse solutions of linear equations using scilab	4
CO5	Determine the solution of various problems by using different Numerical techniques in scilab.	5
CO6	Integrate concepts of Discrete mathematics in various fields.	6

Unit No.	Title of Unit and Contents
1	Scilab- I(Data types, Special matrices, Operations on Matrices, Solving system of
	L.E.)
2	Scilab – II (Defining polynomials, plotting of 2-D and 3-D graphs))
3	Introduction to Scilab programming-I (if , while, for loop)
4	Basic Scilab programming-II
5	Regula Falsi method to find root of a function $f(x) = 0$ using Scilab.
6	Newton Raphson method to find root of a function $f(x) = 0$ using Scilab.
7	Trapezoidal rule to find Integration (using Scilab)
8	Simpson's 1/3 rd rule to find Integration (using Scilab)

9	Simpson's 3/8 th rule to find Integration (using Scilab)
10	Statements and Logic
11	Sets, Relations and Functions
12	Counting Principles
13	Recurrence Relation
14	Student Activity - I
15	Student Activity - II

	F.Y B. Sc (Computer Science) – Semes	ster I
ELS-115	BASIC DIGITAL ELECTRONICS (Minor – Theory)	Credits : 02 Hours : 30
On complet	Course Outcomes (COs) ion of the course, the students will be able	Bloom's cognitive level
	to:	
CO1	Identify logic gates with symbols and truth tables.	1
CO2	State De Morgan's theorems and laws of Boolean Algebra	1
CO3	Discuss circuit diagram and working of different logic circuits.	2
CO4	Use the various rules and laws of Boolean Algebra for designing digital circuits.	3
CO5	Modify (simplify) digital circuits using K-map.	3
CO6	Differentiate basic digital circuits.	4

Unit No.	Unit title and Contents	No. of Hours
I	Logic gates Introduction to analog signals and digital signals, Positive and Negative logic, Logic gates: definition, symbols, truth tables, Boolean expressions, pulsed operation of NOT, OR, AND, NAND, NOR, EX-OR, EX-NOR gates	03
II	Number system and codes Decimal, binary, octal, hexadecimal number systems, Conversion of numbers from one number system to another including decimal / binary points, Binary addition, subtraction, multiplication, division, 1's and 2's complement method of subtraction BCD	08

	code numbers and their limitations, gray code, ASCII code	
ш	Boolean AlgebraRules and laws of Boolean algebra, logic expression,De Morgan's theorems, their proof, Sum of products	08
	form (min. terms), Product of sum form (max. terms), Simplification of Boolean expressions using Boolean algebra and Karnaugh map upto 4 variables.	
	Arithmetic and logical circuits	
IV	Half adder, Full adder circuit and its operation, Parallel binary adder, Half Subtractor, and full Subtractor	04
	Combinational Circuits	
V	Multiplexer(2:1 and 4:1), De-multiplexer (1:2 and 1:4), Encoder, Priority encoder, Decoder, BCD to seven segment decoder	07

- 1. Digital Principles and Applications: Malvino Leach, Tata McGraw-Hill.
- 2. Modern Digital Electronics: Jain R.P., Tata McGraw Hill
- 3. Digital System Design, Morris Mano, Pearson Education (2014)
- 4. Digital Computer Electronics, Malvino
- 5. Digital Principals, Schaum's outline series, Tata McGraw Hill (2006)
- 6. Fundamentals of Logic Design, Charles H. Roth, Jr. and Larry L. Kinney
- 7. Digital Fundamentals: Floyd T.M., Jain R.P., Pearson Education

	F.Y B. Sc (Computer Science) – Semester I		
ELS-116	Electronics Practical – 1 (Minor Practical)	Credits : 02 Hours : 60	
	Course Outcomes (COs) On completion of the course, the students will be able to:		
CO1	Recall the circuit diagrams using different symbols of logic gates	1	
CO2	Discus the working of circuits used in experiments.	2	
CO3	Carry out the experiment to achieve the given objectives.	3	
CO4	Analyze observations of each experiment.	4	
CO5	Validate observed outputs with expected theoretical outputs.	5	

Any 10 Experiments

Sr. No.	Title of Experiment / Practical
1	Study of logic gates
2	Binary to gray code and gray to binary code conversion
3	Verification of De-Morgan's Theorems
4	Interconversion of logic gates using NAND gate
5	Interconversion of logic gates using NOR gate
6	Study of Half adder and full adder
7	Study of Half Subtractor and full Subtractor
8	Study of multiplexer and demultiplexer
9	Simplification of Boolean expressions using Boolean algebra and Karnaugh
	map and its implementation using logic gates
10	4-bit Parallel Adder
11	BCD to seven segment decoder
12	Study of priority encoder IC 74148
13	Construction of 1- bit comparator
14	Implementation of Boolean Functions using Multiplexer
15	Octal to binary Encoder

Or Any Other Equivalent Experiment

F.Y B. Sc (Computer Science) – Semester I		I
STS 115	Fundamentals of Statistics (Minor – Theory)	Credits : 02 Hours : 30
On comp	Course Outcomes (COs) Detion of the course, the students will be	Bloom's cognitive level
	able to:	
CO1	Describe basic features of the data.	1
CO2	Summarize and interpret the data using different graphs.	2
CO3	Examine data and represent in the form of table and graph.	3
CO4	Analyze the statistical measures used in various fields.	4
CO5	Determine chance of an event based on prior knowledge of conditions related to that event.	5
CO6	Develop analytical thinking by using the ability to see a problem or solution from different points of view.	6

Unit No.	Title of Unit and Contents	No. of hours
Ι	Data condensation and Graphical methods	6
	1.1 Raw data, attributes and variables, discrete and continuous	
	variables.	
	1.2 Presentation of data using frequency distribution and	
	cumulative frequency distribution. (Construction of frequency	
	distribution is not expected)	
	1.3 Graphical Presentation of frequency distribution –	
	histogram, stem and leaf chart, less than and more than type	
	ogive curves.	
	1.4Numerical problems related to real life situations.	
	Measures of central tendency and dispersion	10
	2.1 Measures of Central tendency: Mean, Mode, Median.	
	Examples where each one of these is most appropriate.	
II	2.2 Partition values: Quartiles, Box-Plot.	
11	2.3Variance, Standard Deviation, Coefficient of Variation.	
	(Section 2.1 to 2.3 should be covered for raw data, ungrouped	
	frequency distribution and exclusive type grouped frequency	
	distribution)	
	Counting Principles, Sample spaces and Events	4
	3.1Counting Principles	
	3.2Permutation	
	3.3Combination.	
III	3.4Deterministic and non-deterministic models.	
	3.5 Random Experiment, Sample Spaces (finite and countably	
	infinite)	
	3.6 Events: types of events, Operations on events.	

I

F.Y.B. Sc. - I (Computer Science)

Pattern 2023

	Basic Theory of Probability	10
	4.1 Probability - classical definition, probability models, axioms	
	of probability, probability of an event.	
	4.2 Theorems of probability (with proof)	
IV	i) $0 \le P(A) \le 1$ ii) $P(A) + P(A') = 1$	
	iii) $P(A) \leq P(B)$ when $A \subset B$	
	iv) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$	
	4.3 Numerical problems related to real life situations.	
	1	

References:

1. Statistical Methods, G.W. Snedecor, W.G. Cochran, John Wiley & sons, 1989.

2. Fundamentals of Applied Statistics (4th Edition), Gupta and Kapoor, S. Chand and Sons, New Delhi, 2014.

3. Modern Elementary Statistics, Freund J.E., Pearson Publication, 2005.

4. A First course in Probability 6th Edition, Ross, Pearson Publication, 2006.

STS -116	Statistics Practical – 1 (Minor Practical)	Credits : 02 Hours : 60
On completion	Course Outcomes (COs) n of the course, the students will be able	Bloom's cognitive level
	to:	
CO1	Identify the methods and procedures of summarizing information by using summary statistics such as measures of central tendency, dispersion, skewness kurtosis using R	1
CO2	Articulate the data, its types and summarize information in the data using different measures.	2
CO3	Articulate sample space for a certain random experiment and identify events and their types.	2
CO4	Illustrate different real-life situations to find probability of different types of events, the theorems of probability.	3
CO5	Analyse different concepts of statistics using R software.	3
CO6	Create different frequency distributions for real life data	6

Unit No.	Title of Unit and Contents
1	Diagrammatic Representation
2	Methods of Classification (Inclusive and Exclusive) and construction of frequency distributions
3	Introduction to R
4	Graphical methods using R
5	Measures of Central Tendency

F.Y.B. Sc. - I (Computer Science)

6	Measures of Dispersion
7	Measure of Central Tendency and Dispersion using R
8	Counting Principles
9	Permutation and Combination
10	Sample spaces and events
11	Basic probability theory I
12	Basic probability theory II
13,14&15	Applications of statistical techniques to real life data.

	F.Y B.Sc (Computer Science) – Semester I		
CSC -140	Basics of Databases (SEC)	Credits : 02 Hours : 30	
	Course Outcomes (COs) On completion of the course, the students will be able to:	Bloom's cognitive level	
CO1	Identify the data and the concepts of file system and database system.	1	
CO2	Discuss different databases, applications, data models in the field of computer science along with other areas and develop the design of databases.	2	
CO3	Apply the knowledge of database concepts with normalization to draw ER diagram.	3	
CO4	Integrate the concepts of set operations and joins.	4	
CO5	Test the features of good relational database design with entities, attributes and relationship.	5	
CO6	Develop the strong ability to use the database concepts for drawing ER diagram for developing system or application.	6	

Unit	Contents	No. of Hours
Ι	Introduction to DBMS	10
	1.1 Introduction	
	1.2 Basic Concepts and Definition: Data, Information, Data versus	
	Information, Data Warehouse, Metadata, Data Item or Field, Records,	
	Data Dictionary, Database, Database System	
	1.3 Database Users and Database Administrator, Functions and	
	Responsibilities of DBA	
	1.4 File System versus Database System	
	1.5 View of Data	
	1.6 Database Languages	
	1.7 Schemas, Sub-schemas and Instance	
	1.8 3-Level Architecture: Internal Level, Conceptual Level, External	
	Level	

	F.Y.B. Sc I (Computer Science) Pattern	2023
	 1.9 Data Independence: Physical Data Independence, Logical D Independence 1.10 Structure of a DBMS 1.11 Functions of DBMS 1.12 Data Models 	ata
II	 Database design and ER Model: 2.1 Overview 2.2 ER – Model 2.3 Constraints 2.4 E-R Diagrams, ERD Issues, Weak Entity Sets 2.5 Codd's Rules 2.6 Relational database model: Logical view of data, keys, integrity rules 2.7 Relational Database design: Features of good relational database design 2.8 Atomic domain and Normalization 1NF, 2NF, 3NF, BCNF 	10
III	Relational algebra: 3.1 Introduction 3.2 Basic operations: Selection and projection, set operations, renaming Joins, Division	06
IV	Other Databases 4.1 Introduction to Parallel and distributed Databases 4.2 Centralized Database 4.3 Introduction to Object Based Databases: NoSQL Database, Big Data Databases	04

- 1. Henry F. Korth, Abraham Silberschatz, S. Sudarshan Database System Concepts, Tata McGraw-Hill Education
- 2. Elmasri and Navathe, Fundamentals of Database Systems, 4th Edition
- 3. S. K. Singh, Database Management System: Concepts, design & applications, Pearson publication
- 4. NoSQL Distilled, Pramod J. Sadalage and Martin Fowler, Addison Wesley
- 5. NoSQL Distilled A Brief Guide to the Emerging World of Polyglot Persistence: by Pramod J.Sadalage, Martin Fowler, Addison-Wesley, Pearson Education, Inc.
- 6. MongoDB: The Definitive Guide, Kristina Chodorow, Michael Dirolf, O'Reilly Publications

SEMESTER – II

F.Y B.Sc (Computer Science) – Semester II		
CSC -151	Relational Database Management System (Major-Theory)	Credits : 04 Hours : 60
	Course Outcomes (COs) On completion of the course, the students will be able to:	Bloom's cognitive level
CO1	Outline the fundamental concepts of relational database management system.	1
CO2	Explain various methods of database security and access control techniques.	2
CO3	Illustrate the transaction management and recovery management techniques adopted in relational database management systems.	3
CO4	Understand data security and different data recovery techniques.	4
CO5	Validate the queries by implementing error and exception handling techniques.	5
CO6	Develop the ability to write queries, stored procedures, stored functions, triggers, cursors and views.	6

Unit	Contents	No. of Hours
Ι	Structured Query Language (MySQL)	12
	1.1 Introduction	
	1.2 Basic operations	
	1.3 Set operations	
	1.4 Aggregate functions	
	1.5 Null values	
	1.6 Nested Sub-queries	
	1.7 Modifications to Database, DDL commands with	
	examples	
	1.8 SQL mechanisms for joining relations (inner joins,	
	outer joins and their types)	
	1.9 Examples on SQL (case studies)	
II	Relational Database Design	18
	2.1 Procedural Language: Data types, Language structure	
	2.2 Controlling the program flow, conditional statements,	
	Loops	
	2.3 Views	
	2.4 Stored Functions, Stored Procedures	
	2.5 Handling errors and exceptions	
	2.6 Cursors	
	2.7 Concepts of Triggers	

l

III	Transaction concepts and concurrency control	12
	3.1 Describe a transaction	
	3.2 properties of transaction	
	3.3 State of the transaction	
	3.4 Executing transactions concurrently associated problem in	
	concurrent execution	
	3.5 Schedules, types of schedules	
	3.6 Concept of Serializability, precedence graph for	
	Serializability, Ensuring serializability by locks 3.7 Different lock modes, 2PL and its variations	
	3.8 Basic timestamp method for concurrency, Thomas Write	
	Rule, Locks with multiple granularity, dynamic database	
	concurrency (Phantom Problem), Timestamps versus	
	locking	
	3.9 Deadlock handling methods, Detection and	
	Recovery(Wait for graph), Prevention algorithms (Wound-	
	wait, Wait-die)	
IV	Database Integrity and Security Concepts	10
	4.1 Domain constraints, Referential Integrity	
	4.2 Introduction to database security concepts, Methods for	
	database security, Discretionary access control method,	
	Mandatory access control, Role based access control for	
	multilevel security	
	4.3 Use of views in security enforcement	
	4.4 Overview of encryption technique for security	
	4.5 Statistical database security	
V	Crash Recovery	08
	5.1 Failure classification	
	5.2 Recovery concepts	
	5.3 Log base recovery techniques (Deferred and Immediate	
	update), Checkpoints	
	5.4 Recovery with concurrent transactions (Rollback,	
	checkpoints, commit), Database backup and recovery from	
	catastrophic failure	
	-	

- 1. Henry F. Korth, Abraham Silberschatz, S. Sudarshan Database System Concepts, ISBN:9780071289597, Tata McGraw-Hill Education
- 2. An Introduction to Database Systems, C J Date, Addison-Wesley
- 3. Database Systems: Concepts, Design and Application, S.K.Singh, Pearson, Education

e-resources :

- 1. <u>https://www.javatpoint.com</u>
- 2. <u>https://tutorialspoint.com</u>

F.Y B.Sc (Computer Science) – Semester II		
CSC -150	Computer Science Practical –2 (Major Practical)	Credits : 02 Hours : 60
Course Outcomes (COs) On completion of the course, the students will be able to:		Bloom's cognitive level
C01	Define different keys and understand there concepts	1
CO2	Illustrate the concept of table level and column level constraints	2
CO3	Implement different types of queries and aggregate functions	3
CO4	Analyze insert, update, delete records and learn Data Manipulation Language	4
CO5	Validate the queries by implementing error and exception handling techniques	5
CO6	Design and write cursors, triggers, views for different databases	6

Sr. No.	Title of Experiment / Practical
1.	Using basic Linux commands and VI Editor
2.	Create table, Primary key, Referential integrity, and Primary Key constraints
3.	Constraints, Alter Table
4.	Insert, Delete and Update Statement
5.	To Query the tables using aggregate functions
6.	Nested Queries
7.	Control Structures
8.	Stored Functions
9.	Exception Handling
10.	Views
11.	Cursors
12.	Triggers

F.Y B.Sc (Computer Science) – Semester II		
CSC -170	Data Handling using Excel (OE-3 Theory)	Credits: 02 Hours: 30
	Course Outcomes (COs)	Bloom's
	On completion of the course, the students will be able to:	cognitive level
C01	Understand and remember basic principles of data	1
CO2	Build various graphs in Excel	2
CO3	Apply analysis techniques to datasheets in Excel	3
CO4	Analyze Excel functions and techniques for data analysis	4
CO5	Test filters and learn how to use Charts to streamline workflow in	5
CO6	Integrate different features of excel to create effective design principles and present data	6

Unit	Contents	No. of Hours
Ι	Introduction to Excel :	02
	1.1 About Microsoft Excel	
	1.2 Uses of Excel, Excel software	
	1.3 Spreadsheet window pane, Title Bar, Menu Bar,	
	Standard Toolbar, Formatting Toolbar	
	1.4 The Ribbon, File Tab and Backstage View, Formula	
	Bar, Workbook Window, Status Bar, Task Pane,	
	Workbook & sheet	
II	Basic Spreadsheet Handling :	02
	2.1 Selecting Columns & Rows	
	2.2 Changing Column Width & Row Height	
	2.3 Autofitting Columns & Rows, Hiding/Unhiding	
	Columns & Rows	
	2.4 Inserting & Deleting Columns & Rows, Cell, Address of	
	a cell, Components of a cell – Format, value, formula	
	2.5 Use of paste and paste special	
III	Functions in Excel:	03
	3.1 Text Functions	
	3.2 Date time Functions	
	3.3 Logical Functions	
	3.4 Advanced paste special techniques	
	3.5 Using Ranges, Selecting Ranges, Entering Information	
	Into a Range	
	3.6 Using AutoFill	

l

IV	Creating Basic and Advanced Formulas:	05
1 V	4.1 Using Formulas	05
	4.2 Formula Functions – Sum, Average, if, Count, max,	
	min, Proper, Upper, Lower	
	4.3 Using AutoSum, Concatenate	
	4.4 Vlookup, Hlookup	
	4.5 Match, Countif, Text, Trim	
V	Spreadsheet Charts:	05
	5.1 Creating Charts	
	5.2 Different types of chart	
	5.3 Formatting Chart Objects	
	5.4 Changing the Chart Type	
	5.5 Showing and Hiding the Legend	
	5.6 Showing and Hiding the Data Table	
VI	Data Analysis:	03
	6.1 Sorting	
	6.2 Filter	
	6.3 Text to Column	
	6.4 Data Validation	
VII	PivotTables:	05
	7.1 Creating PivotTables	
	7.2 Manipulating a PivotTable	
	7.3 Using the PivotTable Toolbar	
	7.4 Changing Data Field	
	7.5 Properties	
	7.6 Displaying a PivotChart	
	7.7 Setting PivotTable Options	
	7.8 Adding Subtotals to PivotTables	
VIII	Spreadsheet Tools:	03
	8.1 Moving between Spreadsheets	
	8.2 Selecting Multiple Spreadsheets	
	8.3 Inserting and Deleting Spreadsheets Renaming	
	Spreadsheets	
	8.4 Splitting the Screen, Freezing Panes	
	8.5 Copying and Pasting Data between Spreadsheets	
IV	8.6 Hiding, Protecting worksheets	02
IX	Making Macros: 9.1 Recording Macros	02
	9.2 Running Macros	
	9.3 Deleting Macros	

- 1. https://www.simplilearn.com/tutorials/excel-tutorial/data-analysis-excel
- 2. <u>https://www.futurelearn.com/courses/a-beginners-guide-to-data-handling-and-management-in-excel</u>
- 3. <u>https://support.microsoft.com/en-us/office/analyze-data-in-excel</u>
- 4. <u>https://www.analyticsvidhya.com/blog/2021/11/a-comprehensive-guide-on-microsoft-excel-for-data-analysis/</u>

F.Y.B. Sc. - I (Computer Science)

Pattern 2023

F.Y B.Sc (Computer Science) – Semester II		
CSC -171	Web Page Designing (OE-4)	Credits : 02 Hours : 30
	Course Outcomes (COs) On completion of the course, the students will be able to:	Bloom's cognitive level
CO1	Describe different web technologies and application development issues and trends	1
CO2	Develop the skill & knowledge of Web page design	2
CO3	Apply CSS styles to web page	3
CO4	Explain different components and technologies of World Wide Web as a platform.	4
CO5	Design websites using several front end web technologies	5
CO6	Compare various web technologies	6

Unit	Contents	No. of Hours
Ι	Overview:	04
	1.1 Introduction to web technology. What is Web	
	Development?	
	1.2 Introduction to Web server, web browser, Web	
	Protocols (HTTP, TCP/IP Model, UDP, FTP, SMTP, SOAP)	
	1.3 Web development: Frontend, backend	
	1.4 Front End Frameworks and Libraries: HTML, CSS,	
	JavaScript	
	1.5 Back End Frameworks and Technology: PHP, Node JS,	
	Python, Ruby, Java, DBMS	
II	Introduction to HTML:	14
	2.1 HTML features	
	2.2 HTML Structure	
	2.3 HTML Tags	
	2.4 Commenting Codes	
	2.5 Formatting and Fonts	
	2.6 Anchors, Hyperlinks	
	2.7 HTML Backgrounds	
	2.8 HTML Lists, Tables, Frames	
	2.9 HTML Forms	
	2.10 HTML Graphics	
	2.11 HTML SVG-Basics	
	2.12 HTML Canvas Basics	
III	Introduction to CSS:	12
	3.1 Need for CSS	
	3.2 Introduction to CSS	
	3.3 Basic Syntax and structure	
	3.4 Inline styles	

F.Y.B. Sc I (Computer Science)	Pattern 2023
3.5 Embedding Style sheets	
3.6 Linking External Style	
3.7 Background Styles	
3.8 Manipulating Text	
3.9 Margins and Padding	
3.10 Positioning using CSS	

- 1. DT Editorial Services, "HTML 5 Black Book", Dreamtech Press, 2010 3.
- Kogent Learning Solutions Inc., "Web Technologies, Black Book", Dreamtech Press, 2009
 P.J. Deitel & H.M. Deitel, "Internet & World Wide Web How to Program (4thEdition)", Pearson – Prentice Hall, 2000

F.Y B.Sc (Computer Science) – Semester II		
MTS-165	1 0	Credits : 02 Hours : 30
	Course Outcomes (COs) On completion of the course, the students will be able to:	Bloom's cognitive level
CO1	Define and explain the basic concepts of graphs, including vertices, edges, degree, paths, and cycles.	1
CO2	Identify the different graphs based on their properties.	1
CO3	Demonstrate proficiency in representing graphs using various methods, including adjacency matrix, adjacency list, and incidence matrix.	2
CO4	Understand and apply algorithms related to tree traversal, such as in- order, pre-order, and post-order traversal.	2
CO5	Evaluate properties of graphs, including Eulerian and Hamiltonian paths/cycles, using different algorithms.	3
CO6	Apply graph theory concepts to solve real-world problems such as network design, transportation planning, and social network analysis.	3

Unit No.	Title of Unit and Contents	No. of hours
Ι	Introduction to Graphs and Operations on Graphs	4
	1.1 Definition and examples of graph, degree of a vertex, Hand	
	shaking lemma and its corollaries.	
	1.2 Types of graphs: Simple graph, Complete	
	graph, bipartite graph, Regular graph, Null graph.	
	1.3 Isomorphism of graphs.	
	1.4 Adjacency and Incidence Matrix of a	
	Graph.	
	1.5 Vertex induced subgraph, Edge induced subgraph, Vertex	
	deleted subgraph, Edge deleted subgraph.	
	1.6 Union of two graphs, Intersection of two	
	graphs, Product of two graphs, Ring Sum of	
	two graphs.	
	1.7 Fusion of vertices, Complement of a graph.	
	Connected Graphs	8
	2.1 Walk, Trail, Path, Cycle: Definitions and	
II	elementary properties.	
	2.2 Connected Graphs: definition and properties.	

	 2.3 Distance between two vertices, eccentricity, centre, radius and diameter of a graph. 2.4 Isthmus, Cut vertex : Definition and properties. 2.5 Cutset, edge connectivity, vertex connectivity. 2.6 Weighted Graph and Dijkstra's Algorithm. 	
Ш	 Eulerian and Hamiltonian Graphs 3.1 Seven Bridge Problem, Eulerian Graph: Definition and Examples. Necessary and Sufficient condition. 3.2 Fleury's Algorithm. 3.3 Hamiltonian Graph : Definition and Examples, Necessary Condition. 3.4 Introduction to Chinese Postman Problem and Travel Salesman Problem. 	3 ling
IV	Trees4.1 Definition, Properties of trees.4.2 Centre of a tree.4.3 Binary Tree: Definition and properties.4.4 Tree Traversal.4.5 Spanning Tree : Definition, Properties, Shortest Spanning Tree, Kruskal's Algorithm.	8
V	 Directed Graphs 5.1 Definition, Examples, Elementary Terminologies and properties. 5.2 Special Types of Digraphs. 5.3 Connectedness of digraphs. 5.4 Network and Flows: definition and examples. 	7

F.Y.B. Sc. - I (Computer Science)

Learning Resources:

- 1) 'Graph Theory with applications to Engineering and Computer Science', D Narsingh, Prentice Hall publication.
- 2) 'A first look at Graph Theory', John Clark, Derek Allen Holton, Allied Publishers Ltd.

F.Y B.Sc (Computer Science) – Semester II		
MTS-166	Mathematics Practical -2 (Minor Practical)	Credits : 02 Hours : 60
Course Outcomes (COs) On completion of the course, the students will be able to:		Bloom's cognitive level
CO1	Describe the basic concepts of graph theory.	1
CO2	State formulae of different numerical interpolation techniques.	1
CO3	Understand the concepts of different types of graphs.	2
CO4	Discuss different methods to solve Ordinary differential equations.	2
CO5	Solve interpolation problems by different numerical techniques	3
CO6	Apply graph theory concepts to solve real-world problems such as network design, transportation planning, and social network analysis.	3

Unit No.	Title of Unit and Contents
1	Introduction to Graph
2	Connected Graphs.
3	Eulerian and Hamiltonian Graphs
4	Trees.
5	Directed Graphs.
6	Solution to ODE by Euler's Method (By Scilab).
7	Solution to ODE by Runge-kutta of 2 nd order (By Scilab).
8	Solution to ODE by Runge-kutta of 4 th order (By Scilab).
9	Newton's Forward Interpolation (Using Scilab)
10	Newton's Backward Interpolation (Using Scilab)
11	Newton's Divided Interpolation (Using Scilab)
12	Lagrange's Interpolation (Using Scilab)
13	Student Activity -I
14	Students Activity - II
15	Students Activity – III

	F.Y B.Sc (Computer Science) – Semester II	
ELS-165	Sequential Logic Circuits (Minor-Theory)	Credits: 2 Hours: 30
	Course Outcomes (COs) On completion of the course, the students will be able to:	Bloom's Cognitive Level
CO1	Describe the fundamental concepts of sequential logic circuits.	1
CO2	Discuss the design of sequential circuits.	1
CO3	Differentiate synchronous and asynchronous logic circuits.	2
CO4	Explain multi bit shift register, counter and their ICs.	2
CO5	Classify digital memories used in computer system.	3
CO6	Demonstrate memory organization.	3

Unit	Contents	No. of hours
I	Flip flops Difference between combinational and sequential circuits, the Concept of clock and types, synchronous and asynchronous circuits, Latch, S-R-latch, D-latch, Difference between latch and flip-flop, S-R, J-K, and D flip-flop their operation and truth tables, race around condition, Master-slave JK flip flop, T flip flop, and their operation using timing diagram and truth tables	10
п	Sequential Circuits The basic building block of the counter, Ripple counter, up counter, down counter, Up- Down counter, Concept of modulus counters, Decade counter, Shift registers: SISO, SIPO, PISO, PIPO, Ring counter, Universal 4-bit shift register	10
III	Memory organization Memory Architecture, Types of memory, Memory parameters (Access time, speed, capacity, cost), Concept of Address Bus, Data Bus, Control Bus, Memory Hierarchy, Memory address map Vertical & horizontal Memory expansion (increasing the capacity, increasing word size)	10

References:

- 1. Modern Digital Electronics: Jain R.P., Tata McGraw Hill
- 2. Digital Principles and Applications: Malvino Leach, Tata McGraw-Hill.
- 3. Digital Fundamentals: Floyd T.M., Jain R.P., Pearson Education
- 4. Computer Architecture: Morris Mano

	F. Y. B.Sc. (Computer Science) Semester II	
ELS-166	Electronic Science Practical-2 (Minor Practical)	Credits: 2 Hours: 60
	Course Outcomes (COs)	Bloom's
	On completion of the course, the students will be able to:	
CO1	Recall the circuit diagrams required to complete experiments.	Level 1
CO2	Illustrate circuits of individual experiments.	2
CO3	Carry out the experiment to achieve the given objectives.	3
CO4	Analyse observations of each experiment.	4
CO5	Validate observed outputs with expected theoretical outputs.	5

Any 10 Experiments

Expt. No.	Title of the Experiment
1	Study of R-S and D Latch
2	Study of R-S and D flip-flops
3	Testing of flip-flops using ICs
4	Shift register IC 7495: SISO, SIPO
5	Shift register IC 7495: PIPO, PISO
6	Modulo (2, 5, 10) counter using IC 7490
7	Modulo (3, 4, 7) counter using IC 7490
8	Study of Up counter IC 74192/93
9	Study of Down counter IC 74192/93
10	Three-bit synchronous counter
11	Rolling display
12	Diode Matrix ROM
13	Study of RAM
14	Study of IC7493 as Asynchronous Counter
15	Study of 16 X 4 ROM

Or Any Other Equivalent Experiment

I

F.Y B.Sc (Computer Science) – Semester II		
STS-165	Introduction to Probability and Statistics (Minor Theory)	Credits: 2 Hours: 30
(Course Outcomes (COs)	Bloom's
On completion	on of the course, the students will be	cognitive level
	able to:	
CO1	Describe basic features of the data.	1
CO2	Discuss shape and size of the data.	2
CO3	Compute chance of an event based on prior knowledge of conditions that might be related to the event.	3
CO4	Compare different data sets and conclude the best fit.	4
CO5	Evaluate the computational techniques related to advanced probability.	5
CO6	Build predictive models for the data.	6

Unit	Contents	No. of Hours
Unit -I	Moments	3
	1.1Raw and Central moments: definition, computations	
	for ungrouped and grouped data (only up to first four	
	moments)	
	1.2 Relation between raw and central moments up to	
	fourth order (without proof)	
	1.3 Numerical problems related to real life situations	
Unit -II	Measures of Skewness and Kurtosis	5
	2.1 Concept of symmetric frequency distribution,	
	skewness, positive and negative skewness	
	2.2 Measures of Skewness-Pearson's measure,	
	Bowley's measure $(\beta 1, \gamma 1)$	
	2.3 Kurtosis of a frequency distribution, measure of	
	kurtosis ($\beta 2$, $\gamma 2$) based upon moments, type of kurtosis:	
	leptokurtic, platykurtic and mesokurtic	
	2.4 Numerical problems related to real life situations.	
Unit –III	Correlation and Linear Regression	6
	3.1 Bivariate data, Scatter diagram.	
	3.2 Correlation, Positive Correlation, Negative	
	correlation, Zero Correlation	
	3.3 Karl Pearson's coefficient of correlation (r), limits	
	of r (-1 \leq r \leq 1), interpretation of r, Coefficient of	
	determination (r^2)	
	3.4 Meaning of regression, difference between	
	correlation and regression.	
	3.5 Concept and equation of regression line of Y on X.	
	3.6 Concept of residual plot and mean residual sum of	
	squares.	
T T 1 4 T T 7	3.7 Numerical Problems.	
Unit -IV	Non-Linear Regression	4
	4.1Second degree curve	
	4.2 Growth curve models of the type	

l

F.Y.B. Sc. - I (Computer Science)

	i) $Y = ae^{bX}$ ii) $Y = ab^X$ iii) $Y = aX^b$	
	4.3 Logistic model $Y = k / (1+e^{a+bx})$	
	4.4 Numerical problems related to real life situations.	
Unit –V	Advanced Theory of Probability	12
	5.1Concepts and definitions of conditional probability,	
	multiplication theorem $P(A \cap B) = P(A) \cdot P(B A)$	
	5.2 Bayes' theorem (without proof)	
	5.3 Concept of Posterior probability, problems on	
	posterior probability.	
	5.4 Definition of sensitivity of a procedure, specificity	
	of a procedure. Application of Bayes' theorem to design	
	a procedure for false positive and false negative.	
	5.5 Concept and definition of independence of two	
	events.	
	5.6 Numerical problems related to real life situations.	
References:		
1. Statistical Meth	nods, G.W. Snedecor, W.G. Cochran, John Wiley & sons,	1989.
2. Fundamentals	of Applied Statistics (4th Edition), Gupta and Kapoor	r, S. Chand and

Sons, New Delhi, 2014.

3. Modern Elementary Statistics, Freund J.E., Pearson Publication, 2005.

4. A First course in Probability 6th Edition, Ross, Pearson Publication, 2006.

	F.Y B.Sc (Computer Science) – Semester II	
STS 166	Statistics Practical -2 (Minor Practical)	Credits: 2 Hours: 60
On completi	Course Outcomes (COs) I On completion of the course, the students will be able to:	
	Identify different real-life situations to find probability of different types of events using advanced theory of probability.	1
	Discuss various applications of statistical measures using R software.	2
CO3	Execute the computational techniques using R software.	3
CO4	Analyse different concepts of statistics using R software.	4
CO5	Validate the fundamental knowledge and represent using R software.	5
	Write a program using R to build different regression models for the given data and estimate the error.	6

Sr. No.	Title of Experiment / Practical
1	Computation of moments
2	Computation of moments using R
3	Measures of skewness and kurtosis -I
4	Measures of skewness and kurtosis -II
5	Measures of skewness and kurtosis using R
6	Correlation and Regression
7	Correlation and Regression using R

F.Y.B. Sc. - I (Computer Science)

8	Fitting of Second degree and Exponential curves, verification using R
9	Conditional probability
10	Independence of events
11	Applications of Multiplication and Bayes' theorem
12	Sensitivity and Specificity
13,14&15	Applications of statistical techniques to real life data.

l