Deccan Education Society's Fergusson College (Autonomous), Pune

Syllabus under Autonomy for

S.Y.B.Sc. (Mathematics)

From academic year 2017 - 18

Particulars	Name of Paper	Paper Code	Title of Paper	Type of Paper	No. of Credits
S.Y. B.Sc. Semester III	Theory Paper - 1	MTS2301	Multivariable Differential Calculus	CORE-1	3
	Theory Paper - 2	MTS2302	Introduction to Linear Algebra-I	CORE- 2	3
	Theory Paper - 3	MTS2303	Combinatorics	CORE-3	2
	Theory Paper-4	MTS2304	Ordinary Differential Equation	CORE-4	2
S.Y. B.Sc. Semester IV	Theory Paper - 1	MTS2401	Introduction to Linear Algebra-II	CORE-5	3
	Theory Paper - 2	MTS2402	Multivariable Integral Calculus	CORE-6	3
	Theory Paper - 3	MTS2403	Laplace and Fourier Transform	CORE-7	2
	Theory Paper-4	MTS2404	Calculus of complex variables	CORE-8	2

S.Y. B.Sc. (Mathematics) Semester III Mathematics Paper -1 (MTS2301): Multivariable Differential Calculus

[Credits-3]

Unit-I	Differential Calculus of scalar and vector fields:	
	1. Functions from R ⁿ to R ^m . Scalar and vector fields	
	2. Open balls and open sets	
	3. Limits and continuity	14
	4. The derivative of a scalar field with respect to a vector	
	5. Directional derivatives and partial derivatives	
	6. Partial derivatives of higher order	
	7. Directional derivatives and continuity	
	8. The total derivative	
	9. The gradient of a scalar field	
	10. A sufficient condition for differentiability	
	11. A chain rule for derivatives of scalar fields	
	12. Applications to geometry. Level sets. Tangent planes	
	13. Derivatives of vector fields	
	14. Differentiability implies continuity	
	15. The chain rule for derivatives of vector fields	
	16. Matrix form of the chain rule	
	17. Sufficient conditions for the equality of mixed partial derivatives	
Unit-II	Applications of the Differential Calculus :	
	1. Partial differential equations	
	2. A first-order partial differential equation with constant	
	coefficients	
	3. The one-dimensional wave equation	14
	4. Derivatives of functions defined implicitly	
	5. Maxima, minima, and saddle points	
	6. Second-order Taylor formula for scalar fields	
	7. The nature of a stationary point determined by the eigenvalues	
	of the Hessian matrix	
	8. Second-derivative test for extrema of functions of two variables	
	9. Extrema with constraints. Lagrange's multipliers	
	10. The extreme-value theorem for continuous scalar fields	
Defenence	 ner Tom M. Anostol, Calculus Vol II. Second Edition, John Wilsy, & Song 1	[n o
New Verl	z; rom w. Apostol, Calculus vol II, Second Edition, John Wiley & Sons, J	inc.
inew i ork	., 1771.	

S.Y. B.Sc. (Mathematics) Semester III Mathematics Paper -2 (MTS2302): Introduction to Linear Algebra-I

Objective	2S:	
Unit-I	Vectors : Definition of points in n-space and its rules, located vectors, equivalent vectors, parallel vectors, scalar or dot product and its properties, perpendicular or orthogonal vectors, norm of a vector, Pythagoras theorem, projection, angle between vectors, Schwarz inequality, triangle inequality, Lines planes and their parametric equations, homogeneous linear equations, row operations, Gauss elimination, echelon form, elementary matrices, linear combinations and linear dependence.	14
Unit-II	Vectors Spaces : Definition of field, definition of vector space over a field, vector subspace, Necessary and sufficient condition for subspace, sum and direct sum of subspaces, linear combination, linear span/ generator, convex sets, linear dependence / independence, basis, dimension, coordinates of a vector, basis as a maximal linearly independent set, finite dimensional and infinite dimensional vector spaces, the rank of a matrix, row rank, column rank.	12
Unit-III	Linear Transformations: Definition of linear transformation, properties of linear transformations, equality of linear transformations, the coordinates of linear map, the space of linear transformations, kernel and image of a linear transformation, dimension theorem\ rank nullity theorem, rank and linear equations again, dimension of solution set, Matrix of a linear transformation, change of bases, composition of linear transformations, Inverse of a linear transformation, isomorphism, similar matrices. Matrix associated with linear map, linear map associated with matrix.	15
Textbook	: S. Lang, Introduction to Linear Algebra, Second Ed. Springer.	
Reference 1. Howard 2. K. Hoff Delhi, (19 3. G. Strar 4. S. Kum 5. V. Saha	es: I Anton, Chris Rorres., Elementary Linear Algebra, John Wiley & Sons, Inc Imann and R. Kunze, Linear Algebra, Second Ed. Prentice Hall of India , Ne 98). ng, Linear Algebra and its Applications, Fourth Ed., Cengage Learning. aresan, Linear Algebra A Geometric Approach, Prentice-Hall of India, New i and V. Bist, Linear Algebra, Narosa.	ew 7 Delhi.

S.Y. B.Sc. (Mathematics) Semester III Mathematics Paper -3 (MTS2303): Combinatorics

[Credits-2]

Unit-I	(a) Two basic Counting Principles: addition Principle and Multiplication Principle	
	(b) Simple Arrangements and Selections	
	(c) Arrangements and Selections with repetition	14
	(d) Distributions	14
	1. Number of distributions of r distinct objects into n distinct boxes	
	2. Number of distributions of r identical objects into n distinct boxes	
	3. Binomial Identities: Binomial identities and Multinomial theorem.	
Unit-II	Inclusion-Exclusion Principle, Counting with Venn diagrams, Inclusion Exclusion formula, Derangements, Simple Examples.	
		14
Unit-III	Pigeonhole principle	
Unit-IV	Recurrence Relations: Recurrence relation models, Solution of Linear Homogeneous and non-homogeneous recurrence relations (methods without proof)	
Text Book	: Alan Tucker, Applied Combinatorics, Wiley, 1995.	
Reference 1. Richard North-Hol 2. V. K. Ba	Book: A. Brualdi, Introductory Combinatorics, Elsevier, land, New York, 1977. alakrishnan, Combinatorics, Schuam Series, 1995.	

S.Y. B.Sc. (Mathematics) Semester III Mathematics Paper -4 (MTS2304): Ordinary Differential Equation.

[Credits-3]

Objective	25:			
Unit-I	First order Ordinary differential Equations:			
	a) Definition, solution, formation of differential equation,			
	order, degree of differential equation.	14		
	b) Picard's Theorem for existence and uniqueness of	14		
	solution(statement)			
	c) Methods of solution, Exact differential equation.			
	d) Integration factor, Linear differential equation, Bernoulli's			
	differential equation.			
	e) Orthogonal trajectories, Brachistochrone problem.			
Unit-II	Second order Linear Equations:			
	a) Existence and uniqueness Theorem (statement), General	12		
	solution, Particular solution,			
	b) General Solution of homogeneous equation: Linear			
	dependence-independence, of solutions, Wronskian.			
	c) Use of known solution to find another.			
	d) Solution of Homogeneous Equation with constant			
	Coefficients			
Unit-III	Solution of Non-homogeneous equation:			
	a) Method of undetermined coefficients			
	b) Method of variation of parameter	15		
	c) Method of reduction of order			
	d) Variations in mechanical and electrical systems			
	e) Newton's law of gravitation and motion of planets			
Unit-IV	Higher order linear equations,			
	1. Operator methods for finding particular solutions:			
	a) Successive integrations,			
	b) Partial fractions decompositions,			
	c) Series expansions of operators,			
	d) The exponential shift rule.			
	2. Regular Singular points			
Reference	books:			
1. Ge	orge F. Simmons, Differential Equations with Applications And Historical	Notes.		
2. Simmons and Krantz, Differential Equations.				
5. Kainville and Bedient, Elementary Differential equations.				
4. Ea	arl A Coddington, Introduction to Ordinary Differential Equations			

S.Y. B.Sc. (Mathematics) Semester IV Mathematics Paper -1 (MTS2401): Multivariable Integral Calculus

[Credits-3]

Unit-I	Line Integrals Introduction ,Paths and line integrals, Other notations for line integrals , Basic properties of line integrals , The concept of work as a line integral ,Line integrals with respect to arc length ,Applications of line integrals , Open connected sets. Independence of the path , The second fundamental theorem of calculus for line integrals , Applications to mechanics ,The first fundamental theorem of calculus for line integrals , Necessary and sufficient conditions for a vector field to be a gradient ,Necessary conditions for a vector field to be a gradient ,Necessary conditions for a vector field to be a gradient differential equations of first order , Potential functions on convex sets 350	14
Unit-II	Multiple Integral	
	Introduction ,Partitions of rectangles. Step functions ,The double integral of a step function ,The definition of the double integral of a function defined and bounded on a rectangle Upper and lower double integrals , Evaluation of a double integral by repeated one-dimensional integration, Geometric interpretation of the double integral as a volume , Integrability of continuous functions, Integrability of bounded functions with discontinuities , Double integrals extended over more general regions, Applications to area and volume ,Further applications of double integrals, Green's theorem in the plane, Some applications of Green's theorem , A necessary and sufficient condition for a two-dimensional vector field to be a gradient, Change of variables in a double integral, Special cases of the transformation formula	14
Unit III	Surface Integral Parametric representation of a surface, The fundamental vector product, The fundamental vector product as a normal to the surface, Area of a parametric surface, Surface integrals, Change of parametric representation, Other notations for surface integrals, The theorem of Stokes, The curl and divergence of a vector field, Further properties of the curl and divergence, Extensions of Stokes' theorem, The divergence theorem (Gauss' theorem:), Applications of the divergence theorem	
References: Tom M. Apostol, Calculus Vol II, Second Edition, John Wiley & Sons, Inc. New York , 1991.		

S.Y. B.Sc. (Mathematics) Semester IV

Mathematics Paper -2 (MTS2402): Introduction to Linear Algebra-II [Credits-3]

Objectives:			
Unit-I	Inner Product / Scalar product :		
	Inner product, non degenerate, orthogonal, positive definite, norm as length of a vector, distance between two vectors, Pythagoras theorem, parallelogram law, projection, Schwarz inequality, Bessel inequality, orthogonal and orthonormal bases, orthonormal projection, Gram- Schmidt process of ortogonalization, orthogonal complement, Bilinear maps, the dual space.	14	
Unit-II	Determinants:	10	
	Determinants of order two, existence of determinants, 3 by 3 and n by n	12	
	determinants, additional properties of determinants, Cramer's rule,		
	permutations, transposition, sign, determinants in the form of sign and		
	product, inverse of matrix, the rank of a matrix and sub-determinants.		
	determinants as area and volume.		
Unit-III	Eigenvectors and Eigenvalues:		
	Definitions of eigenvectors and eigenvalues eigenspace, the	15	
	characteristic polynomial, eigenvalues and eigenvectors of symmetric	_	
	matrices, quadratic form, diagonalization of a symmetric linear map.		
Textbook	S. Lang, Introduction to Linear Algebra, Second Ed. Springer.		
Reference	25:		
1. Howard	Anton, Chris Rorres., Elementary Linear Algebra, John Wiley & Sons, Inc		
2. K. Hoff	mann and R. Kunze, Linear Algebra, Second Ed. Prentice Hall of India, Ne	ew	
Delhi, (19	98).		
3. G. Strai	ng, Linear Algebra and its Applications, Fourth Ed., Cengage Learning.	Dalla:	
4. S. Kumaresan, Linear Algebra A Geometric Approach, Prentice-Hall of India, New Delhi 5. V. Sabai and V. Bist, Linear Algebra, Narosa			
5. v. Salla	i and v. Dist, Emedi Angeora, Ivarosa.		

S.Y. B.Sc. (Mathematics) Semester IV

Mathematics Paper -3 (MTS2403): Laplace and Fourier Transform [Credits-2]

Objectives:			
Unit-I	The Laplace Transform:		
	Introduction to improper integrals, Piecewise continuous function, Function of exponential order. Laplace Transform of some elementary functions, Some important properties of Laplace Transform, Laplace Transform of derivatives, Laplace Transform of Integrals, Methods of finding Laplace Transform, Evaluation of Integrals, The Gamma function, Unit step function and Dirac delta function.	14	
Unit-II	The Inverse Laplace Transform:		
	Definition, Some inverse Laplace Transform, Some important properties of Inverse Laplace Transform., Inverse Laplace Transform of derivative, Inverse Laplace Transform of integrals, Convolution Theorem, Beta function, Evaluation of Integrals.	12	
Unit-III	Applications of Laplace Transform:		
		15	
Unit-IV	The Fourier Transform on R:		
	Elementary theory of the Fourier transform, Integration of functions on the real lin, Definition of the Fourier transform, The Schwartz space, The Fourier transform on S, The Fourier inversion, The Plancherel formula, Extension to functions of moderate decrease, The Weierstrass approximation theorem.		
Unit-V	Applications to some partial differential equations:		
	The time-dependent heat equation on the real line, The steady-state heat equation in the upper half-plane		
Reference	books:		
1	Schaum's Outline Series - Theory and Problems of Laplace Transform by Murray	/ R.	
2	Spiegel. Articles 1, 2, 3. Fourier Analysis: An introduction, Elias M. Stein & Rami Shakarchi, Princeton University Press.		
3	Richard R. Goldberg, Methods of Real Analysis, Oxford and IBH Publishing Co.	. Pvt.	
1	Ltd. (1970).Art.12.	rlag	
4	New York 1999.	anag	
5	An Introduction to Laplace Transforms and Fourier Series, Springer International	Edition,	
Indian Rep	rint 2005.		

S.Y. B.Sc. (Mathematics) Semester IV

Mathematics Paper -4 (MTS2404): Calculus of Complex Variables

Unit-I	Topology of Complex Plane: Neighborhood of a point in the plane, open sets, closed sets, connected sets, regions in the complex plane. Bounded/ unbounded subsets of C. Completeness of C. Cantor intersection theorem.	14
Unit-II	Functions of a Complex Variable: Definition and examples. Limit and Continuity. Standard theorems on algebra of limits and algebra of continuous functions. Polynomials and Rational Functions of Complex variable.	12
Unit-III	Analytic Functions: Differentiability of a function of complex variable. Comparison with the real differentiability (i.e. as a function of two real variables). Algebra of differentiable functions, chain rule. Definition of analytic function. Cauchy-Riemann equations. Sufficient, condition for analyticity (in terms of C-R equations).	15
Unit-IV	Examples of analytic functions: Definition and properties of the following functions of a complex variable: exponential function, trigonometric functions, hyperbolic functions, Logarithmic functions and its branches, complex exponents, inverse trigonometric functions.	
Unit-V	Integration: Contours, Line integrals, Cauchy's theorem (without proof), Cauchy integral formula. Derivative of analytic function, Cauchy's estimate, Liouville's theorem, Fundamentals Theorem of Algebra.	
Unit-VI	Residues and Poles: Taylor series and Laurent series (Statements only). Examples. Zeros of analytic functions. Definition and examples of a function. Residue Theorem. Principal part of a function. Poles, calculation of residues at poles. Evaluation of improper real integrals.	
Reference 1. Ch 2. Co 3. Sa 4. Sh 5. Ah 6. Late	es : urchill Ruel V. and Brown James W., Complex Variables and Applications, F ition, McGraw- Hill, 1990. nway John B., Functions of One Complex Variable, Narosa Publishing Hous rason Donald, Notes on Complex Function Theory, Hindustan Book Agency astri Anant R., An Introduction to Complex Analysis, Macmillan India, 1999 Ifors Lars V., Complex Analysis, third edition, McGraw-Hill, 1979. ng Serge, Complex Analysis, third edition, Springer, 1993	ifth e, 1973. , 1994.