Deccan Education Society’s
Fergusson College (Autonomous), Pune - 411004
Syllabus under Autonomy
for
S. Y. B. Sc. Chemistry
From Academic Year 2017-18

<table>
<thead>
<tr>
<th>Particulars</th>
<th>Name of Paper</th>
<th>Paper Code</th>
<th>Title of Paper</th>
<th>Type of Paper</th>
<th>No. of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester III</td>
<td>Theory Paper - 2</td>
<td>CHE2302</td>
<td>Reaction Mechanism and Principles of Metallurgy</td>
<td>CORE-2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Practical Paper - 1</td>
<td>CHE2303</td>
<td>Inorganic and Analytical Chemistry Practicals</td>
<td>PCORE-1</td>
<td>2</td>
</tr>
<tr>
<td>S. Y. B. Sc.</td>
<td>Theory Paper - 3</td>
<td>CHE2401</td>
<td>Thermodynamics and Volumetric Analysis</td>
<td>CORE-3</td>
<td>3</td>
</tr>
<tr>
<td>Semester IV</td>
<td>Theory Paper - 4</td>
<td>CHE2402</td>
<td>Introduction of Bio-molecules and Coordination Chemistry</td>
<td>CORE-4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Practical Paper - 2</td>
<td>CHE2403</td>
<td>Physical and Organic Chemistry Practicals</td>
<td>PCORE-2</td>
<td>2</td>
</tr>
</tbody>
</table>
Objectives:
1. Concept of kinetics, terms used, rate laws, types of order, difference between order and molecularity
2. To know the meaning of terms catalyst, catalysis, positive catalysis and negative catalysis.
3. Concept of distribution of solute amongst pair of immiscible solvents
4. Chemical analysis and its applications
6. Basic principles in qualitative analysis
7. Classification of compounds with different functional groups
8. Solving Numerical Problems

<table>
<thead>
<tr>
<th>Unit-I</th>
<th>Chemical Kinetics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introdution to Chemical kinetics, molecularity and order of reaction, reaction rates, rate laws, rate constant and its significance, Integrated rate law expression and its characteristics – zero order, first order, second order equal and unequal initial concentrations, differential rate laws for half-integral order reactions, pseudo molecular reactions, factors affecting rate of reaction, determination of order of reaction, collision theory of reaction rates (Arrhenius equation and non Arrhenius behaviour), transition state theory, numerical.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit-II</th>
<th>Catalysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Types of catalysis, homogenous and heterogeneous catalysis, characteristics of catalytic reactions, promoters and catalytic poisoning, autocatalysis, negative catalysis, activation energy and catalysis, Theories of catalysis (Intermediate compound formation theory and adsorption theory), Acid-base catalysis, enzyme catalysis MichaelisMenten mechanism, Km, rmax and its characteristics, numericals.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit-III</th>
<th>Distribution Law</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nernst distribution law, Statement and thermodynamic proof for Nernst distribution law, Limitation of distribution law, association and dissociation of solute in solvent (modification in distribution law), application of distribution law, Numericals.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit-IV</th>
<th>Introduction to Analytical Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction, chemical analysis, applications of chemical analysis, sampling, types of analysis, common techniques, instrumental methods, other techniques, factors affecting on choice of method.</td>
</tr>
</tbody>
</table>
Unit-V

Errors in Quantitative Analysis
Introduction, Error, accuracy, precision, methods of expressing accuracy and precision, classification of errors, significant figures and computations, distribution of random errors, mean and standard deviations, reliability of results, numericals.

Unit-VI

Inorganic Qualitative Analysis
Basic principle, common ion effect, solubility, solubility product, preparation of original solution, classification of basic radicals in groups, separation of basic radicals, removal of interfering anions (phosphate and borate), detection of acidic radicals.

Unit-VII

A. Qualitative Analysis:
Types of organic compounds, characteristic tests and classifications, reactions of different functional groups, analysis of binary mixtures.

B. Quantitative Analysis:

Text Books:
3. Fundamentals of Analytical Chemistry by Skoog, West, Holler and Crouch
5. Quantitative Organic Analysis, fourth edition, A.J. Vogel, ELBS

References:
5. Vogel’s textbook of Quantitative Analysis, sixth edition J. Mendham, R.C. Denney, J.D. Barnes, and MJK Thomas
Objectives:
1. To learn types of reaction mechanisms, name reactions and rearrangements.
2. To learn different configurations and stability of cycloalkanes.
3. Basic principles of Metallurgy, ores and minerals.
4. To know the different theories of acids and bases.
5. Recapitulation of periodic table, skeleton of long form of periodic table.

Table of Contents

<table>
<thead>
<tr>
<th>Unit</th>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit-I</td>
<td>Reaction Mechanism:</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Introduction, types of reagents, electrophile, nucleophile and free radical. Types of organic reactions: Addition, Elimination ((\beta)-elimination and Hofmann elimination), substitution (aliphatic electrophilic and nucleophilic, aromatic electrophilic) and rearrangement. Mechanism: (i) Markovnikov and anti-Markovnikov addition reaction (ii) Saytzeff and Hoffmann elimination (iii) SN1, SN2 and SNi reactions.</td>
<td></td>
</tr>
<tr>
<td>Unit-II</td>
<td>Name Reactions and Rearrangements:</td>
<td>10</td>
</tr>
<tr>
<td>Unit-III</td>
<td>Stereoisomerism:</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Recapitulation of Stereochemistry in general, Baeyer's strain theory, Conformation and stability of cyclohexane, mono and dissubstituted cyclohexane with CH(_3) groups. Locking of conformation. E(_2)-Elimination reactions in substituted cyclohexane (cis and trans 1-bromo-2-methyl cyclohexane).</td>
<td></td>
</tr>
<tr>
<td>Unit-IV</td>
<td>Acids, Bases and Solvents:</td>
<td>8</td>
</tr>
</tbody>
</table>
Unit-VI

Chemistry of s and p Block Elements:
Position of elements in periodic table, electronic configuration, trends in properties like atomic size, ionization potential, electro-negativity, relative stability of different oxidation states, anomalous behavior of first member of each group, Inert pair effect. Crown ethers and cryptans, separation of s-block elements using crown ethers. Compounds of s-block elements: oxides, hydroxides, peroxides, super oxides. Study of the following compounds with emphasis on structure and bonding - Borate, Boron nitrides, Diborane, Halides of aluminum, Allotropes of carbon, Silanes, Oxyacids of phosphorous and sulphur, Inter -halogen compounds.

Unit-VII

General Principles of Metallurgy:
Occurrence of metals, ores and minerals, types of ores, operations involved in metallurgy, crushing, concentration, various methods of concentration such as hand picking-gravity separation, magnetic separation. Froth flotation, Calcinations, Roasting etc.Reduction, various methods of reduction such as smelting, Aluminothermic process and electrolytic reduction, Refining of metals, Electrolytic process, van Arkel-de and Mond’s process, Zone refining.

Text Books:

References:
3. Stereochemistry of carbon compounds - E. L. Eliel
5. Reactions, rearrangements and reagents – S N Sanyal.
11. Fundamental Chemistry by A. K. Dee.(3rd Ed.)
Inorganic Qualitative Analysis (Any Four)

1. Two simple mixtures (without phosphate or borate)
2. Three Mixtures containing PO_4^{3-} (With PO_4^{3-} removal)
3. Three Mixtures containing BO_3^{3-} (With BO_3^{3-} removal)

Preparation of Coordination Complexes and Yield (Any One)

4. Preparation of $[\text{Cu(NH}_3)_4]\text{SO}_4\cdot\text{H}_2\text{O}$
5. Preparation of $[\text{Ni(NH}_3)_6]\text{Cl}_2$

B. Analytical Chemistry Practicals (Any Five)

6. Determination of Ca in presence of Mg using EDTA.

7.
 a) Preparation of standard 0.05N oxalic acid solution and standardization of approx 0.05N KMnO$_4$ solution.
 b) Determination of the strength of given H$_2$O$_2$ solution with standard 0.05N KMnO$_4$ solution.

8.
 a) To determine the amount of Aspirin from a given tablet.
 b) To find the absolute error & relative error with reference to the mean of analysis.
 c) To find the standard deviation & relative standard deviation with reference to the mean of analysis.

9. Estimation of Nickel/Aluminum from the given salt solution by using Eriochrome Black-T indicator (Back titration method).

10. To determine the amount of copper from the given solution iodometrically.

11.
 a) To choose the best indicator in the titration between standard 0.05N oxalic acid solution & approx. 0.05N NaOH.
 b) To standardize the approx. 0.05N NaOH solution against standard 0.05N oxalic acid solution using best indicator.
 c) To determine the amount of acetic acid in commercial vinegar by titrating with approx. 0.05N NaOH solution using selected best indicator.

12. To find out the amount of Acetone in the given solution iodometrically.

13. Report of one day industrial study tour [either in semester III or IV].
<table>
<thead>
<tr>
<th>References</th>
<th></th>
<th></th>
</tr>
</thead>
</table>
Objectives:
1. Thermodynamic terms and basic concept: system boundary, surroundings, thermodynamic systems, thermodynamic process, nature of heat and work, internal energy, first law of thermodynamics (mathematical expression), molar heat capacities, relation between C_p and C_v, Joule Thomson effect and numericals
2. Free energy concepts, types and its variation
3. Ideal and non-ideal solutions and laws governing these solutions
4. Solving Numericals
5. Meaning of equivalent weight, molecular weight, normality, molality, primary & secondary standards, different way to express concentrations of the solution.
6. Types instrumental and non-instrumental analysis
7. Role of indicators.

Unit-I

Chemical Thermodynamics
Thermodynamic Terms: System, Boundary, Surroundings, Homogenous and heterogeneous systems, Types of thermodynamic systems, Intensive and extensive properties, States of systems (equilibrium and non-equilibrium states), Thermodynamic process, Reversible and irreversible process, Nature of heat and work, Internal energy, First law of thermodynamics, Carnot cycle, enthalpy of system, molar heat capacities, Adiabatic expansion of an ideal gas, work done in Adiabatic reversible expansion
Second law of thermodynamics: spontaneous process, entropy, standard entropy of formation

Free Energy and Equilibrium
Introduction, Helmholtz free energy, variation of Helmholtz free energy with volume and temperature, Helmholtz free change energy for chemical reaction, Gibb’s free energy, Variation of Gibb’s free energy with pressure and temperature, Gibb’s free energy change for chemical reaction, Free energy change for physical transitions, Free energy change for an ideal gas; standard free energy change, Gibb’s-Helmholtz equation, Properties and significance of Gibb’s free change, Van’t Hoff reaction isotherm, thermodynamic equilibrium constants, Relation between K_p and K_c for gaseous reactions, variation of equilibrium constant with temperature, Criteria for chemical equilibrium, Physical equilibrium, Clapeyron equation, Clausius–Clapeyron equation, Application of Clausius–Clapeyron equation, numericals.

<table>
<thead>
<tr>
<th>Unit-I</th>
<th>Chemical Thermodynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Thermodynamic Terms: System, Boundary, Surroundings, Homogenous and heterogeneous systems, Types of thermodynamic systems, Intensive and extensive properties, States of systems (equilibrium and non-equilibrium states), Thermodynamic process, Reversible and irreversible process, Nature of heat and work, Internal energy, First law of thermodynamics, Carnot cycle, enthalpy of system, molar heat capacities, Adiabatic expansion of an ideal gas, work done in Adiabatic reversible expansion Second law of thermodynamics: spontaneous process, entropy, standard entropy of formation</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit-II</th>
<th>Free Energy and Equilibrium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction, Helmholtz free energy, variation of Helmholtz free energy with volume and temperature, Helmholtz free change energy for chemical reaction, Gibb’s free energy, Variation of Gibb’s free energy with pressure and temperature, Gibb’s free energy change for chemical reaction, Free energy change for physical transitions, Free energy change for an ideal gas; standard free energy change, Gibb’s-Helmholtz equation, Properties and significance of Gibb’s free change, Van’t Hoff reaction isotherm, thermodynamic equilibrium constants, Relation between K_p and K_c for gaseous reactions, variation of equilibrium constant with temperature, Criteria for chemical equilibrium, Physical equilibrium, Clapeyron equation, Clausius–Clapeyron equation, Application of Clausius–Clapeyron equation, numericals.</td>
</tr>
</tbody>
</table>

[Credits-3]
Unit-III

Solutions

Unit-IV

Introduction to Volumetric Analysis

Introduction, methods of expressing concentrations, primary and secondary standard solutions, Apparatus used and their calibration: burettes, micro burettes, volumetric pipettes, graduated pipettes, volumetric flask, methods of calibration, Instrumental & non-instrumental analysis, principles & types.

Unit-V

Non Instrumental Volumetric Analysis

i. Introduction

Introduction of volumetric (titrimetric) analysis, titrant, titrand, direct titration, indirect titration-back and blank titration

ii. Acid–Base Titrations

Acid base indicators, Ostwald’s Theory of acid base indicators, mixed and universal indicators Strong acid–Strong base, Weak acid–strong base, Weak acid-Weak base titration, Displacement titrations, polybasic acid titrations. (Discuss titration with respect to neutralization and equivalence point determination, titration curves and limitations)

iii. Redox Titrations

Principle of redox titration, detection of equivalence point using suitable indicators, Titration of oxalic acid vs KMnO₄, Application- Estimation of Fe(II) & H₂O

iv. Complexometric Titrations

Principle, Mg-EDTA titration, Role of Metal ion indicators in EDTA titration, choice of indicators, Applications, Estimation of Al (III) & Nickel.

v. Iodometric Titration: Iodometry (Direct and Indirect Titration)

Principle, detection of end point, difference between iodometry and iodiumetry, Standardization of sodium thiosulphate solution using potassium dichromate and iodine method, Applications, estimation of Cu, estimation of Acetone.
Text Books:
3. Chemical thermodynamics by R. P. Rastogiamd R.P. Misera
4. Fundamentals of Analytical Chemistry by Skoog, West, Holler and Crouch
5. A textbook of macro & semi micro qualitative analysis by A.J. Vogel, fifth edition

References:
1. Elements of Chemical thermodynamics, L.K Nash 2nd Ed.
2. Chemical Thermodynamics by M. Roy.
S.Y. B.Sc. (Chemistry) Semester IV
Chemistry Paper - 2 (CHE2402): Introduction of Bio-molecules and Coordination Chemistry

[Credits-3]

Objectives:

1. To learn the uses, merits and demerits of different reagents
2. To learn concept of aromaticity.
3. To learn the reactions and synthetic route for preparation of heterocyclic compounds
4. To understand the reactions and importance of biochemistry of carbohydrates and amino acids.
5. To understand the Werner’s formulation of complexes and identify the ionisable ions.
6. Be able to give the IUPAC name the co-ordination compound.
7. Be able to define, explain and draw various types of isomerism in complexes.
8. To know position of d-block elements and noble gas elements in periodic table.
9. Bonding and structures of important compounds
10. To know the impact of toxic chemicals

<table>
<thead>
<tr>
<th>Unit-I</th>
<th>Reagents in Organic Synthesis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reducing agents: Catalytic hydrogenation homogenous and heterogeneous, Birch reduction, Bouvael-Blanc Reduction, NaBH₄, LiAlH₄, Sn/HCl, NH₂/NH₂/OH, baker’s yeast. Oxidizing agents: KMnO₄, K₂Cr₂O₇, Jones reagent, PDC, PCC, Per acids, OsO₄, Prevost oxidation, MnO₂ and SeO₂.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit-II</th>
<th>Chemistry of Heterocyclic Compounds with One Hetero Atom</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Classification and nomenclature, Structure, aromaticity in 5-numbered and 6-membered rings containing one heteroatom; Synthesis, reactions and mechanism of substitution reactions of: Furan, Pyrrole (Paal-Knorr synthesis, Knorr pyrrole synthesis and Hantzsch synthesis), Thiophene, Pyridine (Hantzsch synthesis), Nitration, Sulphonation, Acylation and Catalytical reduction, Fischer indole synthesis, Synthesis of quinoline (Skraup synthesis) and isoquinoline (Pictet-Spengler reaction and Bischler-Napieralski reaction)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit-III</th>
<th>Introduction of Bio-Molecules</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carbohydrates: Definition, classification, reaction of monosaccharide (glucose)- oxidation, reduction, osazone and ester formation, isomerization, Killiani-Fischer synthesis and Ruff degradation, D/L configuration of (+) Glucose, Fischer-Haworth and chair formulae, Brief account of disaccharides: Sucrose, cellobiose, maltose and lactose, Polysaccharides: Starch, cellulose and glycogen. Amino acids: Fischer projection, relative configuration, classification, structures and reactions of amino acids, Properties and chemical reactions with amino and carboxylic group, Peptide linkage.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit-IV</th>
<th>Coordination Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Werner’s theory, valence bond theory (inner and outer orbital complexes), electroneutrality principle, back bonding, Sidgwick’s theory,</td>
</tr>
</tbody>
</table>
Unit-V
Chemistry of d-Block Elements:
Position of d-block in periodic table, electronic configuration, trends in properties of these elements w.r.t. (a) size of atoms & ions (b) catalytic activity (c) variable oxidation states (d) complex formation ability (e) colour (f) magnetic properties (g) non-stoichiometry

Unit-VI
Noble Gases:
Occurrence and uses, rationalization of inertness of noble gases, Clathrates, structure and properties of XeF₂, XeF₄ and XeF₆, Molecular shapes of noble gas compounds, oxide and oxofluorides (VSEPR Theory)

Unit-VII
Chemical Toxicology
Metal ions present in biological systems, classification of elements according to their action in biological system. Excess and deficiency of some trace metals. Biochemical effect of toxic chemicals, Toxicity of metal ions (Hg, Pb, Cd and As), reasons for toxicity, Biological methylation

Text Books:
4. Coordination Chemistry 2009 D. Banerjea

References:
8. Stereochemistry of carbon compounds - E. L. Eliel
10. Reactions, rearrangements and reagents – S N Sanyal
16. Fundamental Chemistry by A. K. Dee (3rd Ed.)
S. Y. B. Sc. (Chemistry) Semester IV
Chemistry Paper - 3 (CHE2403): Physical and Organic Chemistry Practicals

[Credits-2]

List of Practicals: Any eight experiments from the list and Hobby project/Poster/Any other activity (equivalent to 2 experiments)

<table>
<thead>
<tr>
<th>A. Physical Chemistry Practicals (Any Five)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. To determine critical solution temperature of phenol water system.</td>
</tr>
<tr>
<td>2. To determine molecular weight of given organic liquid by steam distillation.</td>
</tr>
<tr>
<td>3. Determination of solubility of benzoic acid at different temperature and to determine ΔH of dissociation process.</td>
</tr>
<tr>
<td>4. To determine the partition coefficient of iodine between water and carbon tetrachloride.</td>
</tr>
<tr>
<td>5. To compare the relative strength of HCl and H_2SO_4 by studying the kinetics of hydrolysis of an ester.</td>
</tr>
<tr>
<td>6. To determine the first order velocity constant of decomposition of hydrogen peroxide by volume determination of oxygen.</td>
</tr>
<tr>
<td>7. To determine the rate constant of base catalyzed ester hydrolysis</td>
</tr>
<tr>
<td>8. To study the neutralization of acid (HCl) by base (NaOH) and CH_3COOH by NaOH.</td>
</tr>
<tr>
<td>9. Computational Chemistry: To optimize structure and spectra of molecules using standard software’s.</td>
</tr>
<tr>
<td>10. Report of one day industrial study tour [either in semester III or IV].</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. Organic Chemistry Practicals (Any Five)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. Qualitative analysis of unknown binary organic compounds. (Including elemental test) Solid mixtures only (Minimum Three Mixtures).</td>
</tr>
<tr>
<td>12. Preparation of phthalimide form phthalic anhydride</td>
</tr>
</tbody>
</table>
| 13. Benzoylation of one of the following amines (aniline, α-, m-, p-toluidines and α-, m-, p-anisidine) and one of the following phenols (β-naphthol, resorcinol, p-cresol)

References:
1. Practical Physical Chemistry by Findlay’s
2. A textbook of practical physical chemistry and calculations by J. Rose
6. Molecular Modelling by Andrew Leach