Deccan Education Society's FERGUSSON COLLEGE, PUNE (AUTONOMOUS)

SYLLABUS UNDER AUTONOMY

FIRST YEAR B.Sc. VOCATIONAL BIOTECHNOLOGY SEMESTER –I

Academic Year 2016-2017

Deccan Education Society's Fergusson College (Autonomous), Pune Faculty of Science First Year B.Sc. (Vocational Biotechnology) Syllabus

Particulars	Code	Title of Paper	Credits
F.Y. B.Sc.	VBT1101	Biochemistry	2
Semester I	VBT1102	Microbiology	2
	VBT1103	Practicals in Biochemistry and	2
		Microbiology	
F.Y. B.Sc.	VBT1201	Biophysical Techniques	2
Semester II	VBT1202	Biostatistics	2
	VBT1203	Practicals in Biophysics and	2
		Biostatistics	

PAPER CODE: VBT1101

PAPER – I: BIOCHEMISTRY

{Credit – 2: No of lectures: 36}

UNIT. No	Title and Contents	No. of Lectures
Ι	Introduction to Biochemistry:	1
	History and development of subject, cell and organism and biochemical entities	
II	Properties of water: Water as the universal solvent, Polarity,	1
	of fusion, melting point, and boiling point.	
III	Carbohydrates: Definition, classification, monosaccharides, disaccharides, and polysaccharide and their functions.	5
IV	Amino acids and proteins: Definition, properties and classification of amino acids. Definition, physical and chemical properties of proteins, structure of protein, Classification of proteins based on their functions.	8
V	Lipids: Definition, Classification, properties, and functions of lipids.	4
VI	Enzymes: Definition, classification, properties of enzymes, Lock and key hypothesis, factors affecting activity of enzymes, Coenzymes and Isoenzymes and their role in biological systems.	7
VII	Nucleic acids : Definition, components of nucleic acids, structure of DNA and RNA, Biological functions.	2
VIII	Introduction to metabolism: Concept of free energy, energy rich compounds, and significance of ATP Metabolic pathways : Glycolysis, Features and energetics of glycolysis, TCA cycle, Features and energetic of TCA, β -Oxidation of fatty acids, and features and energetics of β -Oxidation of fatty acids	8

Learning Outcomes:

At the end of the semester, students should understand:

- The basics of biochemistry.
- The correlation and interdependence of different processes in the body.
- The basics of metabolism and their role in carrying out various metabolic reactions
- The basic structure of different biomolecules.

References:

- 1. Principles of Biochemistry by Nelson and Cox
- 2. Outlines of biochemistry, Conn, Stumph, Bruening, Doi by Wiley international publication.
- 3. Biochemistry by Harper

PAPER CODE: VBT1102

PAPER – II: MICROBIOLOGY

{Credit – 2: No of lectures: 36}

UNIT. No	Title and Contents	No. of Lectures
Ι	Unit-1 Introduction to Microbial World	5
	ii. Historical Account – Important developments leading to major	
	discoveries. Path breaking discoveries. Product Development (18th	
	– 20th Century including pregolden, golden and post golden era)	
II	Outline Classification of all 5 major groups of	7
	Microorganisms Procaryotic and Eukaryotic Bacteria, Fungi,	
	Algae, cynobacteria and viruses. (Life cycle, Nutrition and Growth)	
III	Microscopy:	
	i.Wet mount and dry mount.	5
	ii. Staining Techniques :Definations ,Classifications of	
	stains(Basic ,Acidic ,Neutral), Fixative ,Mordant,Decoloriser	
	,Accentuator ,	
	iii.Pricipals of Staining Techniques for following : Theory of	
	staining –	
	A)Simple staining (Monochrome, Negative)	
	B)Differential (Gram ,Acid fast ,Blood staining)	
	C)Special staining(spore, Flagella , Cell wall, Nucliec Acid	
	,Capsule)	
IV	Enrichment culture techniques	0
	Extremophiles- Inermophiles, Acidophiles, Algae, Fungi, Blue	8
	green algae- (Phosphate solubalising organisms, Rhizobium,	
	AZOLODACIER)	
	Connorms (MFIV/Fiesumpuve)	
X 7	Culturing of microorganisms	
v	Preparation of media Nutritional classification Types of media	6
	Different components of media Simple media enrichment media	0
	selective media differential media (NA PDA BAP MAC SS)	
	biofilm formation & quorum sensing	
VI	Virnee	
V I	Structure of viruses Classification cultivation with representative	5
	example.	5

Learning outcomes

At the end of the semester; students should understand:

- The basics of microbiology.
- Theory behind various staining techniques to stain micro-organisms
- Culturing methods of micro-organisms
- Characteristic features of different viruses.

References:

1. Ingraham J. L. and Ingraham C.A. (2004). Introduction to Microbiology. 3nd Edition. Thomson Brooks / Cole.

- 2. Madigan M.T., Martinko J.M. (2006). Brock's Biology of Microorganisms. 11th Edition. Pearson Education Inc.
- 3. Tortora G.J., Funke B.R., Case C.L. (2006). Microbiology: An Introduction. 8th Edition. Pearson Education Inc
- 4. Stanier R.Y., Adelberg E.A. and Ingraham J.L. (1987) General Microbiology, 5th Edition. Macmillan Press Ltd. Biswas and Biswas "Introduction to viruses."

Paper code: VBT1103 Paper III PRACTICALS IN BIOCHEMISTRY AND MICROBIOLOGY {Credit: 2: no of practicals =10}

UNIT. No	Title and Contents	
	Biochemistry	5
Ι	Qualitative tests for carbohydrates	1
II	Quantitative estimation of reducing sugars from a given Sample- By DNSA method	1
III	Quantitative estimation of carbohydrates by using anthrone reagent	1
IV	Quantitative estimation of proteins by using Folin Lowry method	1
V.	Quantitative estimation of proteins by using Biuret method	1
	Microbiology	5
Ι	Monochrome & Gram staining	1
П	Capsule and Spore staining	1
III	Isolation of microorganisms by Streak Plate method, pour plate method, spread plate method	2
IV	Potability test for water : Presumptive test	1

Learning outcomes

At the end of the semester; students should understand:

- Qualitative and quantitative analysis of different biomolecules like carbohydrates and proteins
- Various methods staining and other basic microbiological techniques
- Microbiological analysis of various water samples.

Deccan Education Society's FERGUSSON COLLEGE, PUNE (AUTONOMOUS)

SYLLABUS UNDER AUTONOMY

FIRST YEAR B.Sc. VOCATIONAL BIOTECHNOLOGY SEMESTER –II

Academic Year 2016-2017

PAPER CODE: VBT1201 PAPER – I: BIOPHYSICAL TECHNIQUES {Credit -2: No of lectures: 36}

UNIT. No	Title and Contents	No. of Lectures
Ι	Introduction to Biophysics	1
II	Chromatographic techniques Partition principle, Thin layer chromatography, Paper chromatography, Ion exchange chromatography, Affinity chromatography, Gel filtration chromatography	12
III	Spectrophotometry 1) uv and visible spectrophotometry - With Basics 2) Nephelometry 3) Turbidometry	9
IV	Microscopy Introduction to microscopy Compound microscopy Dark field, and phase contrast microscopy, Fluorescence microscopy 	5
V	Radioisotopic techniques Radioisotopes in biology and their applications, detection& estimation of radioactivity by Geiger-Muller counter, Solid and liquid scintillation counters	6
VI	Electrophoretic Techniques factors affecting electrophoretic mobility, Paper electrophoresis , agarose gel electrophoresis	3

Learning outcomes

At the end of the semester; students should understand:

- Various biophysical techniques like chromatography, electrophoresis, microscopy, spectrophotometry.
- Applications of biophysical techniques in industry and research.
- Analysis of unknown molecules by biophysical techniques.

References:

- 1. Wilson Keith and Kenneth H.Goulding (1994) principles of techniques of practical biochemistry. 4TH Edn. Cambridge University Press, London.
- 2. Biophysical chemistry principals and techniques by Upadhyay & Nath Khandpur R.S. (1989) Handbook of Analytical Instruments Tmh Pub Co. Ltd.New

Paper code:VBT1202 Paper – II: BIOSTATISTICS {Credits – 2: No of lectures: 36}

UNIT. No	Title and Contents	No. of Lectures
Ι	Descriptive statistics	18
	Arithmetic mean, geometric mean, harmonic mean, mode median,	
	range, standard deviation, Variance, mean variance	
II	Frequency distribution : Introduction to normal, binomial and	6
	Poisson distribution. Test for goodness of fit.	
III	Comparison of two sample means, T-Tests, non-parametric tests	4
IV	Regression and correlation	4
V	Experimental design and sampling	4

Learning outcomes

At the end of the semester; students should understand:

- Basics of biostatistics.
- Analysis of data statistically in research and industry.

References

- 1. Wardiaw A.C. Practical statistics for experimental biologists.
- 2. Cochran W.G. and G.W. Snedeco statistical methods -Sixth Ed.
- 3. Biostatistics by Khan and Khanum
- 4. Introductory biostatistics. 1st edition. (2003), Chap T. Le. John Wiley, USA
- 5. High YieldTMBiostatistics. (2001) Antony N Glaser. Lippincott Williams and Wilkins, USA

Paper code: VBT1203 Paper III PRACTICALS IN BIOPHYSICS AND BIOSTATISTICS {Credit: 02 : no of practicals =10}

UNIT. No	Title and Contents	Practicals (Total 10 P)
	Biophysics and instrumentation	
1.	Determination of molar extinction coefficient using colorimeter, visible spectrometer	1
2.	Estimation of PH of given sample	1
3.	Determination of dry weight, total solids and moisture content by gravimetric method	1
4.	TLC/Paper Chromatography	2
	Biostatistics and computers	
1.	Data entry and statistical analysis using excel	1
2.	Data sorting	2
3.	Tabulation, ANOVA	2

Learning outcomes: At the end of the semester; students should understand:

- The principle and working of spectrophotometer and colorimeter.
- Determination of pH of any unknown sample.
- Statistical analysis using Excel.