Deccan Education Society's FERGUSSON COLLEGE, PUNE (AUTONOMOUS)

SYLLABUS UNDER AUTONOMY

FIRST YEAR B.Sc. Physics

SEMESTER – I

Academic Year 2016-2017

Deccan Education Society's Fergusson College (Autonomous), Pune Faculty of Science Course structure for B.Sc. (Physics)

Semester	Course	Title of the Course	No. of
	Code		Credits
Ι	PHY1101	Mechanics and Properties of matter	2
	PHY1102	Heat and thermodynamics	2
	PHY1103	Physics Practical - I	2
Π	PHY1201	Introduction to Mathematical Physics	2
	PHY1202	Electricity and Magnetism	2
	PHY1203	Physics Practical - II	2

Preamble:

Fergusson College is awarded academic autonomy by the UGC beginning the year 2016-17. This autonomy is for a period of six years. We shall be following the semester pattern for academic transactions and the Credit Based Assessment System will be followed for assessment. The curriculum for the graduate programme in Physics is designed to cater to the requirements of the Autonomy and the Credit system following the UGC guidelines.

Physics is one of the oldest branches of natural sciences. It forms the foundation of the scientific process.

The programme is aimed to be more learning centric than teaching centric. The courses are designed so that a student progressively develops a deeper understanding of various aspects of physics.

Physics is learnt more through experimentation than only through classroom sessions. The experiments are designed to develop logical thinking and analytical ability. Reading between lines is important and some open ended experiments, assignments and small projects are designed to develop these skills.

Continuous assessment is an integral part of the credit system. This will help students learn their subjects systematically and thoroughly.

The under graduate programme in physics is spread over three years with two semesters every year. There will be two theory courses and one laboratory course each semester for the first and the second year. For the third year, there will be six theory courses and three laboratory courses each semester.

Objectives:

- 1. To explore different areas of physics.
- 2. To develop theoretical foundation and experimental skills to study various natural phenomena.
- 3. To train students for in depth study of physics.
- 4. To encourage students to explore applications of physics in various walks of life.
- 5. To inculcate research culture by introducing projects at the final year of the course.

PAPER CODE	C: PHY1101	
PAPER – I: M	ECHANICS AND PROPERTIES OF MATTER	
No. of Credits:	2 No. of Lectures	s: 36
	Title and Contents	No. of
		Lectures
Unit -I	Moment of Inertia	
	Moment of Inertia: Definition of MI, Radius of	
	gyration, Statement of parallel and perpendicular axis	
	theorems. Derivation of MI of: i) Circular Ring, ii)	
	Circular Disc, iii) Annular Ring, iv) Spherical shell &	10
	solid sphere, v) Hollow cylinder & Solid cylinder,	
	vi) Flywheel, axel & its Applications, vii) Spring	
	Gyroscope: Principal, construction, working and	
	applications	
Unit -II	Gravitation: Newton's law of gravitation, Gravitational	
	force, Gravitational field and Gravitational potential,	
	Gravitational potential energy of a multi-particle system,	8
	uniform solid sphere and galaxy, Central force, Kepler's	
	laws of planetary motion	
Unit –III	Elasticity: Basic concepts of elasticity, Hook's law, three	
	types of elastic moduli, Poisson's ratio, Relationship	
	between Y, k, n. Bending of beam, bending moment,	
	cantilever load at free end, loaded	8
	uniformly, due to its own weight. Determination of Y by	
	bending of a uniformly loaded beam. Determination of	
	elastic constant using Searle's method	
Unit –IV	Fluid Mechanics: Laminar and viscous flow, viscosity,	
	Coefficient of viscosity, Streamline flow and Turbulent	
	flow (Tubular flow), Equation of continuity of flow,	
	Energy of fluid. Bernoulli's theorem (Steady flow),	10
	Euler's equation.	
	Applications of Bernoulli's theorem: Venturi meter, Pitot	
	tube, Aerofoil, Bunsen burner, Atomizer, Spinning of a	
	ball. Critical velocity and Reynold's number	
Keterence	1. University Physics: Sears and Zeemansky, XII ^{aa}	
Books:	edition, Pearson Education	
	2. FAUSICS: VOLUME 1, Kesnick/Halliday/Krane John Willow & Song (Soc) and held 4^{th} different	
	whey & Sons (Sea) pvt itd. 4 dedition.	
	5. Froperues of Matter: D. S. Matnur, Shamlal	
	A Machanica D. S. Mathur S. Chand and Commence	
	4. Internations: D. S. Intathur, S. Chand and Company New Delbi	
	5 Concepts of Drysics Vol I: U C Verme Depret	
	з. Concepts of Enysics, vol I. п. С. varina, Dilarati Bhayan Publishers	
	Dilavali i ubiisiicis	

PAPER CODE: PHY1102 PAPER – II: HEAT AND THERMODYNAMICS No. of Credits: 2

No. of Credits:	No. of Credits: 2 No. of Lectures	
	Title and Contents	No. of
		Lectures
Unit -I	Concepts of Thermodynamics: Thermodynamic state of	8
	a system and zeroth law of thermodynamics,	
	Thermodynamic Equilibrium, Adiabatic and isothermal	
	changes, Work done during isothermal changes,	
	Adiabatic relations for perfect gas, Work done during	
	adiabatic change, Indicator Diagram, First law of	
	Thermodynamics, Reversible and Irreversible processes	
Unit -II	Applied Thermodynamics: Conversion of heat into	8
	work and its converse, Carnot's cycle and Carnot's heat	
	engine and its efficiency, Second law of	
	Thermodynamics, Concept of entropy, Temperature-	
	Entropy diagram, T-dS Equation, Clausius-Clapeyron	
	latent heat equations	
Unit –III	Heat Transfer Mechanisms: Heat Engines (Otto cycle	8
	and its efficiency, Diesel cycle and its efficiency),	
	Refrigerators (General principle and coefficient of	
	performance of refrigerator, The Carnot refrigerator,	
	Simple structure of vapour compression refrigerator), Air	
	conditioning principle and its applications	
Unit –IV	Equation of state: Equations of state, Andrew's	8
	experiment, Amagat's experiment, Van der Waals'	
	equation of state, Critical constants, Reduced equation of	
	state, Joule-Thomson porous plug experiment	
Unit –V	Thermometry: Temperature Scales (Centigrade,	4
	Fahrenheit and Kelvin scale), Principle, construction and	
	working of following thermometers (Liquid and gas	
	thermometers, Resistive type thermometers,	
	Thermocouple as thermometer, Pyrometers)	
Reference	1. Physics: Volume I, Resnick/Halliday/Krane John	
Books:	Wiley & Sons (Sea) pvt ltd	
	2. Sears and Zemansky's University Physics, 12th	
	Edition, H. D. Young, R. A. Freedman, A. L.	
	Ford, F. W. Sears, Pearson Education	
	3. Concept of Physics Vol I: H. C. Verma, Bharati	
	Bhavan Publishers	
	4. Heat and thermodynamics: Singhal, Agarwal and	
	Prakash.	
	5. Heat and Thermodynamics Bridal N	
	Subrahmanyam S Chand & Company Itd New	
	Delhi	

	PAPER CODE: PHY1103		
	PAPER – III: PHYSICS PRACTICAL - I		
	No. of Credits: 2 No. of Experiments: 10		
	Title of Experiment		
1	Measurement of least count of various instruments		
2	Moment of Inertia of a disc by torsional oscillations		
3	Viscosity by flow through a capillary tube by Poiseuille's method		
4	'Y' by bending		
5	Plotting of graph and analysis		
6	Moment of inertia of a flywheel		
7	Calibration of thermocouple		
8	Thermal conductivity by Lee's method		
9	Demo experiment I		
10	Demo experiment II		

Deccan Education Society's FERGUSSON COLLEGE, PUNE (AUTONOMOUS)

SYLLABUS UNDER AUTONOMY

FIRST YEAR B.Sc. Physics

SEMESTER – II

Academic Year 2016-2017

PAPER CODE: 1	PHY1201	
PAPER – I: INT	RODUCTION TO MATHEMATICAL PHYSICS	
No. of Credits: 2	No. of Lectures	s: 36
	Title and Contents	No. of
		Lectures
Unit -I	Complex Numbers: Introduction to Complex Numbers, Algebra of Complex Numbers, Argand diagram, Algebra of complex numbers using Argand Diagram, Rectangular, polar and exponential forms of complex Numbers, De- Moivre's theorem (statement only), Trigonometric, hyperbolic and exponential functions, Powers, roots and log of complex numbers, Application of complex numbers to determine velocity and acceleration in curved motion. <i>Problems</i>	10
Unit -II	Vector Analysis: Differentiation of vectors with respect to scalars, Scalar and vector fields, Vector differential operators, Gradient of scalar field and its physical significance, Curl of vector field and its physical significance, Vector integrals (line, surface and volume integral with their examples), Statements of Gauss divergence theorem and Stoke's theorem. Vector identities: a) $\nabla \times \nabla \emptyset = 0$ b) $\nabla \cdot (\nabla \times V) = 0$ c) $\nabla \cdot (\nabla \emptyset) = \nabla^2 \emptyset$ d) $\nabla \cdot (\nabla \emptyset) = \nabla^2 \emptyset$ d) $\nabla \cdot (\emptyset A) = \nabla \emptyset \cdot A + \emptyset (\nabla \cdot A)$ e) $\nabla \times (\emptyset A) = \emptyset (\nabla \times A) + (\nabla \emptyset) \times A$ f) $\nabla (A \times B) = B \cdot (\nabla \times A) - A \cdot (\nabla \times B)$	8
Unit –III	Partial Differentiation: Definition of partial differentiation, Successive differentiation, Total differentiation, Exact differential, Chain rule, Theorems of differentiation, Change of variables from Cartesian to polar co-ordinates, Implicit and explicit functions, Conditions for maxima and minima (without proof) <i>Problems</i>	8
Unit –IV	Applications of differential equations: First order differential equations: Growth and decay (Charging and discharging in CR Circuit, LR circuit, Radioactive decay, Population problems), Temperature Problems (Cooling of a body), Falling Body Problems (Equation of Motion for velocity and position of the body when all resistance is proportional to velocity of body) Second order differential equations: Simple Harmonic Oscillator, LCR Circuit, Buoyancy	10
Reference	1. Mathematical Physics, B. D. Gupta, Pragati	

Books:	Prakashan, Meerut
	2. Mathematical Methods in Physical Science, Mary
	L. Boas, Wiley Publications
	3. Schaum's Outline of Vector Analysis, Murray R.
	Spiegel, McGraw Hill Professional
	4. Theory And Problems Of Differential Equations
	(Schaum's Outline Series), Bronson, Tata
	McGraw-Hill Education

PAPER CODI PAPER – II: E	E: PHY1202 ELECTRICITY AND MAGNETISM	
No. of Credits: 2 No. of Lectures: 36		
	Title and Contents	No. of Lectures
Unit -I	Dielectrics: Polarization of matter (Atomic view, Induced charges, Free charges and bound charges), Polarization charges and dipole moment, Electric susceptibility and polarization vector, Electric displacement and examples, Gauss's law in dielectrics, Boundary conditions at dielectric surface	10
Unit -II	D C circuits: Growth and decay of current in R-L circuit, Growth and decay of current in L-C circuit, L-R-C series circuit	6
Unit -III	A C circuits: Phasors, Resistance and Reactance, L-R-C series circuit, Power in AC circuit, Resonance in AC circuit,	10
Unit –IV	Magnetism in matter: Ampere's circuit law and it's applications, Gauss law for magnetism, Magnetic Materials (Ferro magnetic, Paramagnetic, diamagnetic), Cause of magnetization (Spin magnetic moment and orbital magnetic moment, Bohr magneton), Concepts of H , B , M , χ , μ , Relation between B , H , M , Hysteresis	10
Reference Books:	 Fundamentals of electricity and Magnetism, Arthur Kip, McGraw-Hill Sears and Zemansky's University Physics, 12th Edition, H. D. Young, R. A. Freedman, A. L. Ford F W Sears Pearson Education 	

	PAPER CODE: PHY1203			
	PAPER – III: PHYSICS PRACTICAL - II			
	No. of Credits: 2	No. of Experiments: 10		
	Title of Experiment			
1	Determination of frequency of A. C.			
2	Study of LCR circuit			
3	Verification of circuit theorems			
4	Study and calibration of spectrometer			
5	Charging, discharging of capacitor			
6	L-R circuit: Vector diagram and power factor			
7	Diode characteristics			
8	Temperature coefficient of resistance			
9 & 10	Study visit			