Two Years
M. Sc. Degree Course in Chemistry
(Analytical Chemistry)

SYLLABUS
Semester – III and IV

Second Year M. Sc.
[Analytical Chemistry]

[Academic Year : 2017-2018]
Two Years M. Sc. Degree Course in Analytical Chemistry

[Implemented from Academic Year 2017-2018]

M. Sc. Part II Analytical Chemistry Course Structure under CBCS (Autonomous)

<table>
<thead>
<tr>
<th>Term / Semester</th>
<th>Name of the Paper</th>
<th>Title of Paper</th>
<th>Theory Credits</th>
<th>No. of Lectures / Practicals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHA5301</td>
<td>Electro analytical and Radio analytical Techniques</td>
<td>4</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>CHA5302</td>
<td>Pharmaceutical Analysis</td>
<td>4</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>CHA5303</td>
<td>Extraction and Atomic spectroscopic Techniques</td>
<td>4</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>CHA5304</td>
<td>Elective Papers : Any Two</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHA5308</td>
<td>Metallurgy and Analysis of Cement</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>CHA5309</td>
<td>Geochemical and Agrochemical Material Analysis</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>CHA5305</td>
<td>Analytical method development and Validation.</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>CHA5306</td>
<td>Analytical Chemistry Practical V (Industrial materials Analysis)</td>
<td>4</td>
<td>15 Practicals</td>
</tr>
<tr>
<td></td>
<td>CHA5307</td>
<td>Self-Learning Course-3</td>
<td>1</td>
<td>15</td>
</tr>
</tbody>
</table>

Semester III : Credits

| 25 |

<table>
<thead>
<tr>
<th>Term / Semester</th>
<th>Name of the Paper</th>
<th>Title of Paper</th>
<th>Theory Credits</th>
<th>No. of Lectures / Practicals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHA5401</td>
<td>Analytical Toxicology, Forensic and Food Analysis.</td>
<td>4</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>CHA5402</td>
<td>Analytical spectroscopy.</td>
<td>4</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>CHA5403</td>
<td>Consumer products and polymer Analysis.</td>
<td>4</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>CHA5404</td>
<td>Elective Papers : Any Two</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHA5408</td>
<td>Bioanalytical methods.</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>CHA5409</td>
<td>Pollution monitoring and control</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>CHA5405</td>
<td>Analytical Chemistry Practical VII (Analysis of Consumer products)</td>
<td>4</td>
<td>15 Practicals</td>
</tr>
<tr>
<td></td>
<td>CHA5406</td>
<td>Analytical Chemistry Practical VIII (Analysis of food and pharmaceutical products / Project)</td>
<td>4</td>
<td>15 Practicals</td>
</tr>
<tr>
<td></td>
<td>CHA5407</td>
<td>Self-Learning Course-4</td>
<td>1</td>
<td>15</td>
</tr>
</tbody>
</table>

Semester IV : Credits

<p>| 25 |</p>
<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Title of the Course</th>
<th>No. of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>XCS0007</td>
<td>Introduction to Cyber Security - III / Information Security - III</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>XSD0008</td>
<td>Skill Development - III</td>
<td>1</td>
</tr>
<tr>
<td>IV</td>
<td>XCS0009</td>
<td>Introduction to Cyber Security - IV / Information Security - IV</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>XSD0010</td>
<td>Skill Development - IV</td>
<td>1</td>
</tr>
</tbody>
</table>
Semester III

Course Code: CHA5301
Course Title: Electro Analytical and Radio Analytical Techniques
(4 Credits)

Objectives:
1. To study the basics of electrochemical reactions.
2. To understand the concept of Faraday’s law.
3. To know principle, instrumentation and applications of different electroanalytical techniques.
4. To know importance of Ilkovik equation.
5. To understand the concept of Radio analytical method of Analysis.
6. To know principle, instrumentation and applications of Activation analysis.
7. To know principle, types and applications of IDA.
8. To know principle, types and applications of Radiometric Titrations.
9. To understand basic concepts of Thermal methods of Analysis.
10. To study instrumentation of Thermo gravimetric methods of analysis.
11. To understand the factors affecting Thermo gravimetric methods of analysis curve.
12. To understand application of DTA.
13. To know principle and instrumentation of DSC.
14. To understand concept of Thermometric Titrations and EGA.

Unit-I

| **Coulometry:** | Current voltage relationship during an electrolysis, Operating cell an at fixed applied potential, Electrolysis at constant working electrode potential, Coulometric methods of analysis, Faradays laws of electrolysis, Instrumentations-Constant current and constant voltage instruments, potentiostatic coulometry- Instrumentation and applications, Coulometric titrations (Amperostatic coulometry)-Apparatus and applications, advantages and limitations, problems. Specific Applications of Coulometry. | 6L |

Unit-II

| **Voltammetry and Polarographic Methods of Analysis** | a. **Polarography** (linear scan polarography): Polarographic principles, Instrumentation (different types of microelectrode such as dropping mercury electrode, the static drop mercury electrode, rotating disc and ring disc electrode, cell for polarography, reference and counter electrode and circuit diagram), polarogram and polarographic currents, charging or capacitive current, role of supporting electrolyte, factors affecting on polarographic wave, Ilkovic Equation, advantages and disadvantages of DME, polarographic maxima and maxima suppressors, interference due to dissolved oxygen, Applications (qualitative analysis, quantitative analysis by calibration curve and standard addition methods), specific examples of analysis – analysis of Cu, Cd, Zn, Pb, etc. from tap water and alloys., problems. Specific Applications of Voltametry and Polarography, b. **Hydrodynamic voltametry** and applications of hydrodynamic voltametry (volatametric detectors in chromatography and flow injection analysis, Voltametric oxygen sensors, amperometric | 18L |
titration), Rotating Disc Voltametry, Rotating Ring Disc voltametry, Flow through Voltametry, Specific Applications.

c. **Pulse Polarography:** Different types of excitation signals in pulse polarography, Differential pulse polarography, square wave polarography, Stripping method. Voltammetry with ultra microelectrode, Applications of these technique Cu and Zn from tap water by differential pulse polarography and by square wave polarography, Vitamin-C by differential pulse polarography, Determination of Pb in tap water by stripping method), Specific Applications.

d. **Cyclic Voltammetry:** Principle of cyclic Voltammetry, cyclic voltamogram of K₃[Fe(CN)₆], and parathion, criteria of reversibility of electrochemical reactions, quasi reversible and irreversible processes. Randles Sevcik equation, Cyclic Voltametry on modified electrode, Cyclic Voltametry of aromatic compounds, Electron transfer followed by Chemical reaction (EC mechanism), specific applications.

e. **Amperometry:** Principle, instrumentation, typical applications, amperometric titrations, chronoamperometry and chronopotentiometry, specific applications.

f. **Important Electrochemical Devices:** Batteries, Fuel Cells, Super capacitors, Ion Selective Electrodes.

Unit-III

Radioanalytical Methods of Analysis

- **Activation analysis:** Neutron activation analysis, principle, technique, steps involved in neutron activation analysis. Radiochemical and instrumental methods of analysis, important applications of NAA.
- **Isotope Dilution Analysis:** Principle, types of isotope dilution analysis, typical applications of isotope dilution analysis.
- **Radiometric Titration:** Principle, techniques based on complex formation & precipitation, radiometric titration curves for estimation of ions from their mixture.

20L

Unit-IV

Thermal Methods of Analysis

- **Thermo gravimetric methods of analysis:** Instrumentation, thermogram and information from thermogram, factors affecting thermogram, applications TGA for quantitative analysis (TG analysis of CaC₂O₄ H₂O, CuSO₄5H₂O, dolomite ore, etc.) and problems based TGA.
- **Differential Thermal Analysis (DTA):** Instrumentation, general principles, differential thermogram, DT and TG curve together, Applications (DT analysis of mixture of polymers, DT analysis of CaC₂O₄ H₂O, DT analysis of sulfur, DT analysis of CuSO₄ 5H₂O). TG and DT curve for Mn(PH₂O₂)₂ H₂O.
- **Differential Scanning Calorimetry (DSC):** Principle, Instrumentation, and Applications (DCS curve of polyethylene terphthalate, DSC curve for isothermal crystallization of polyethylene, DSC of phenacetin), thermometric titrations, Evolved gas analysis.

16 L
References:

5. J. chemical education, 60, 302 to 308 (1983)
7. Cyclic Voltammetry and frontiers of electrochemistry by N. Noel and K. I. Vasu IBH, New Delhi (1990)
Course Code: CHA5302
Course Title: Pharmaceutical Analysis
(4 Credits)

Objectives:
1. Requirement of bioassay.
4. Preliminary testing of test sample
5. To understand the concept and determination of Limit test for different pharmaceutical substance
6. To understand concept of Membrane filtration technique
7. Knowledge about adulteration misbranding
8. How to read labels and its importance
9. Information about IND and NDA
10. Importance of sterilization.
11. To learn different Pharmacokinetics and Pharmacodynamics effects of drugs on human body.
12. Precautions needed to be taken while processing pharmaceutical product.
13. Importance of pharmacopeia.
14. To formulate Karl fischer reagent and standardisation.
15. Types of aerosols.

| Unit I | **Role of FDA in Pharmaceutical Industries**
Definitions of Drug & Cosmetics, Sub standard Drugs, Role of FDA,
Introduction to New Drug, Development of New Drugs- Selection of Area, Phase I, Phase II, Phase III. Application to FDA for formulation and marketing for new drug. Stability studies and Self life fixation | 6L |
| --- | --- | --- |
| Unit II | **Biological Tests & Assay** : Introduction to biological assay,
Biological assay of Heparin sodium, Determination of Amylase activity, abnormal toxicity for antisera & vaccines Test for assay of Insulin, Biological Assay of Tetanus Antitoxin, Test for Undue Toxicity. | 6L |
| Unit III | **Microbiological Tests and Assays** : Microbiological test for Antibiotics, Standard preparation and units of activity, Types of solution for microbial contamination ,Test organisms and Inoculums, Cylinder-plate assay receptacles, Turbidimetric or tube assay methods,
Assay Designs, Cylinder plate or Cup-plate method, Pour plate method, surface spread method, Most probable number method, Two level fractional assay. | 8L |
| Unit IV | **Physical Test, Determinations of Limit test, Sterilization, Pharmacokinetics and Pharmacodynamics:** Disintegration test for tablets and capsules, dissolution test for tablets and capsules, uniformity of weight of single-dose. moisture / water content by Karl-Fischer titration, Limit tests for aluminium, arsenic, iron, lead, potassium, sulphate, chloride, heavy metals
Methods for Sterilization, Steam Sterilization, Dry heat sterilization, Sterilization by Filtration,
Gas Sterilization, Sterilization by Ionizing radiation, Sterilization by | 10L |
heating with Bactericides.

Unit V

Sources of Impurities in Pharmaceutical Raw Materials & Finished Products, Shelf Life of Pharmaceutical Product: Raw materials, Method of manufacture, Atmospheric contaminations, Cross contamination, Microbial contamination, Container contamination, Packaging errors, Chemical instability, Temperature effect and Physical changes, shelf life of Pharmaceutical product and determination of shelf life. Water for pharmaceutical use. 8L

Unit VI

Analysis of Vegetable Drugs: Sampling, foreign organic matter, test for complete extraction alkaloids, ash value, acid soluble ash, acid insoluble ash, sulphated ash, Extraction of alkaloids. Loss on drying loss on ignition. 6L

Unit VII

Standardization and Quality Control of Different Raw Materials and Dosage: Analysis of raw materials with respect to identification, other or related substances, loss on drying, and Assay as per IP, i) steroids, ii) Niacinamide iii) Cephalexin, iv) ferrous fumarate, v) isoniazid and vi) paracetamol. Problems based on assay of these materials. Brief Introduction to different dosage forms with the IP requirements Analytical methods for the following- Tablets, different types of tablets, uniformity in weight (aspirin) additives used in tablet manufacture, capsules, types of capsules, (Rifampicin), Powders (Sodium benzoate), Solutions (saline NaCl), Suspensions (barium sulphate –limit test for impurity), Mouthwashes, (Ointments salicylic acid) and creams Dimethicone by IR) Injections (Mannitol), Aerosols (salbutamol), Blood products and reporting protocols. Problems based on assay of these materials. 16L

References:

1. Indian Pharmacopeia Volume I and II.
4. Ansel’s Pharmaceutical Analysis.
Course Code: CHA5303
Course Title: Extraction and Atomic Spectroscopic Techniques
(4 Credits)

Objective:
1. To understand principle behind extraction techniques.
2. To understand principle of liquid-liquid extraction techniques.
3. To identify method of selection of solvents for LLE.
4. To understand principle of Solid Phase extraction.
5. To know principle of Solid phase micro-extraction.
6. To learn about Methods of analysis: SPMEGC, SPME-HPLC-MS.
7. To acquire knowledge of advance automation of SPME.
8. To know principle of microwave assisted extraction.
9. To learn about instrumentation methods of microwave assisted extraction.
10. To study application of microwave assisted extraction.
11. To understand principle of supercritical fluid extraction.
12. To understand Theory, principle, instrumentation and applications of atomic spectroscopic techniques.
13. To learn about Methods of introducing sample in atomic spectroscopic instrumentation.
14. To understand Theory of Flame atomizer
15. To understand construction and working of LASER.
16. To study application of LASER with respect to AFS analysis.
17. To know instrumentation of Resonant Ionization Spectroscopy.

<table>
<thead>
<tr>
<th>Unit I</th>
<th>Course Content</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>Introduction to Extraction Techniques: Introduction, Pre-Sampling Issues, Sampling Strategies: Solid, Aqueous and Air Samples, Quality Assurance Aspects.</td>
<td>3L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit II</th>
<th>Course Content</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical</td>
<td>Classical Approach for Aqueous Extraction: Introduction, Liquid-Liquid extraction (LLE) (Theory of LLE, selection of solvents, solvent extraction, problems with LLE process), purge and trap for volatile organics in aqueous samples.</td>
<td>6L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit III</th>
<th>Course Content</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid Phase</td>
<td>Solid Phase Extraction (SPE): Introduction, Types of SPE media, SPE formats and apparatus, method for SPE operation, solvent selection, factors affecting SPE, selected methods of analysis for SPE, Automation and On-Line SPE. Introduction to Solid phase micro-extraction, theoretical considerations, experimental, Methods of analysis: SPMEGC, Methods of analysis: SPME-HPLC-MS, Automation of SPME, New development in micro extraction (liquid micro extraction, membrane micro extraction).</td>
<td>12L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit IV</th>
<th>Course Content</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microwave</td>
<td>Microwave Assisted and Supercritical Fluid Extraction Introduction to microwave assisted and its instrumentation with Applications. Supercritical fluid extraction: concept of critical state of matter and super critical state, types of super critical fluids, apparatus and applications to environmental, food, pharmaceuticals and polymeric analysis.</td>
<td>9L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit V</th>
<th>Course Content</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical</td>
<td>Introduction to Optical Atomic Spectroscopic Analysis: Theory, atomic emission spectra, atomic absorption spectra, atomic line width,</td>
<td>4L</td>
</tr>
</tbody>
</table>
Factors affecting spectral width, effect of temperature, sample introduction methods, introduction of solid samples.

Unit VI
Atomic Absorption Spectroscopy: Flame atomizer, types of flames, flame profile, Factors affecting atomization efficiency, electro-thermal atomizers, Cold vapor technique, radiation sources-HCL, EDL and instrumentation for AAS, chemical and spectral interferences, standard addition, internal standard method of analysis, Applications of AAS.

Unit VII
Atomic Emission Spectrometry (AES): Sources, inductively coupled plasma and direct current plasma, laser microprobe, wavelength selection and detection, qualitative and quantitative analysis, comparison of atomic absorption and emission methods, Applications of AES.

Unit VIII
Atomic Mass Spectroscopy: Features of atomic mass spectroscopy, Atomic weight in mass spectroscopy, mass to charge ratio, Types of atomic mass spectroscopy, transducer for mass spectroscopy, quadrupole mass analyzer, time of flight mass analyzer, Inductively coupled mass spectroscopy (ICPMS), Atomic mass spectra and interferences, Applications of ICPMS.

Unit I

References:

4. Principles of Instrumental Analysis, Skoog, Holler, Nieman, (Sixth Ed.)
5. Vogel’s Textbook of Quantitative analysis 6th Ed.
6. Modern analytical techniques in the pharmaceutical and bio analysis By Dr. Istvan Bak (Book Available Online).
9. Practical HPLC method Development, Snyder, Kirkland, Glajch, Wiley India Pvt. Ltd.
Elective Papers (Any Two)

Course Code: CHA 5304
Course Title: Metallurgy and Analysis of Cement
(2 Credits)

Objectives:
1. To describe ores and minerals with examples.
2. To know methods of metal dressing and effect of metallurgical process on environment.
3. To study analysis of various ores and alloys by chemical methods.
4. To understand the process of metal extraction from respective ores.
5. To describe ores and minerals with examples.

Unit I
Introduction: Ores and minerals, dressing of ore, methods of metal dressing (hand picking, magnetic separation, centrifuge, froth flotation etc.), pollution due to metallurgical process (Metal dressing, calcinations, smelting).

Unit II
Analysis of Ores and Alloys: Dolomite (For silicate, Mg and Ca content), Ilmenite (for silicate, Ti and Fe content), Monazite (for rare earth metals), Hematite (silicate and Fe content), Pyrolusite (for silicate and Mn content) and bauxite (for Al and Silicate content). Alloy: Types, composition and analysis of Copper based alloy like cupronickel (Cu, Ni), bronze (Cu, Sn) and brass (Cu, Zn), Aluminum based alloy Duralumin and Magnalium, stainless steel (Fe, Cr, Ni, Co, Cu, Mn), and Solder (Pb and Sn).

Unit III

Unit IV

References:
2 Quantitative Inorganic Analysis including Elementary Instrumental analysis, By A. I. Vogel, 3rd, ELBS, 1964.
3 Chemical analysis of metals ; Sampling and analysis of metal bearing ores: American Society for Testing and Materials 1980 - Technology & Engineering
Course Code: CHA 5308
Course Title: Geochemical and Agrochemical Material Analysis
(2 Credits)

Objectives:
1. To study the determination of major soil constituents fusion analysis.
2. To understand chemical and mineralogical composition of soil.
3. To understand the process of Sampling and sample preparation.
4. To analyze nitrogen content by Kjeldahl method.
5. Determination of total nitrogen by reduced iron method.
6. To describe various methods for Potassium content.
7. To understand mechanism of action and synthesis and sampling of pesticide residue and standards.

| Unit I | Analysis of Soil: Chemical and mineralogical composition of soil, classification of soil, types of soil- saline and alkaline, Sampling, Carbonate, Organic carbon, and organic matter, Total nitrogen, ammonia and nitrates, Total determination of major soil constituents by fusion analysis, silica and total combined oxides of iron, aluminium, and titanium, Determination Ca, Mg, Na, K, phosphate, Exchangeable cations, Cation exchange capacity, macro and micronutrients (functions and deficiency) for plant growth. |

| Unit III | Analysis of Pesticides Residue: Introduction, Classification, mechanism of action and synthesis, Sampling of pesticide residue, pesticide standards, Analysis of DDT, Benzene Hexachloride (BHC), Aldrin, Arsenicals, Parathion, Dieldrin, Fenuron, Fumarin, Malathion, ovotran, Phenthiazin, Pival, Potassium cyanate, sodium chloride, warfarin, Zineb. |

References:
6 Development and validation of Analytical Methods, Progress Pharmaceutical and Biomedical Analysis, Vol-3, Edited by Chitofer M. Riley and Tomas W. Rosansk (Elvier).
8 Practical HPLC method Development, Snyder, Kirkiand, Glajch, Wiley India Pvt. Ltd.
Course Code: CHA 5309
Course Title: Analytical Method Developments and Validation
(2 Credits)

Objectives:
1. To understand concept Assay Validation and Inter Laboratory Transfer.
2. To study inter-laboratory qualification (ILQ) process.
3. To understand concept of Statistical Analysis and analytical Figure of Merit.
4. To study different way of performing Statistical Analysis.
5. To study concept of Dissolution test, Apparatus – USP type –I and II.
6. To understand Sampling and analytical instrumentation.
7. To know various methods of data analysis.

<table>
<thead>
<tr>
<th>Unit I</th>
<th>Assay Validation and Inter Laboratory Transfer: Introduction, fundamental definitions, Essential principles of method transfer, method of validation report, the inter-laboratory qualification (ILQ) process.</th>
<th>8L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit II</td>
<td>Statistical Analysis and Analytical Figure of Merit: Introduction to statistical analysis, Errors: determinant errors, systematic Errors, random errors, statistical treatment of random error, Accuracy, precision, standard deviation, t- test, Q-test, calibration, linear response functions (linear regression-errors in slope and the intercept, error in the estimate of concentration, standard additions), non-linear response functions and weighted regression analysis, internal standards), selectivity and specificity, limits of detections, limit of quantification, sensitivity, ruggedness and robustness, analyte stability in the sample matrix, how to reduce systematic errors, reliability of results, confidence interval.</td>
<td>16L</td>
</tr>
<tr>
<td>Unit III</td>
<td>Specific methods and Applications: Dissolution Studies: Introduction, Dissolution test, Apparatus – USP type –I and II, Sampling and analytical instrumentation, Single point test Vs. Dissolution profile, Calibration, regularatory guidelines, analytical validation, linearity, accuracy, precision, specificity.</td>
<td>6L</td>
</tr>
</tbody>
</table>

References:

1. Development and validation of Analytical Methods, Progress Pharmaceutical and Biomedical Analysis, Vol-3, Edited by Chitofer M. Riley and Tomas W. Rosansk (Elvier).
3. Practical HPLC method Development, Snyder, Kirkiand, Glajch, Wiley India Pvt. Ltd.
Course Code: CHA5305
Course Title: Analytical Chemistry Practical V
(Industrial Materials Analysis) (Any Fifteen)
(Credit 4)

1. Estimation of aspirin content from tablet by conductometric titration with standard solution of NaOH.
2. To determine concentration of sulphuric acid, acetic acid and copper sulphate by conductometric titration.
3. To determine isobastic point of indicator by spectrophotometric measurement.
4. Determination of Na from water sample by flame photometry using calibration curve and standard addition method.
5. Determination of K from water sample by flame photometry using calibration curve and standard addition method.
6. Determination of sulphate ion by turbidimetry using calibration curve method.
7. Determine sulphate from water sample by Nephelometry.
8. Determine concentration of sodium and potassium from binary mixture by flame photometry.
9. Estimation of micronutrients from food by AAS (any two elements from Fe, Cu, Zn, Mn, Mo, B etc)
10. Determination of Cu and Zn in brass alloy by polarography
11. Determination of diffusion current from cyclic voltamogram of $K_3Fe(CN)_6$
12. Analysis of Dolomite for Si, Ca and Mg
13. Analysis of Magnalium for Al and Mg
14. Analysis of bauxite for Si and Al
15. Analysis of Plaster of Paris for Ca by KMnO$_4$ method.
16. Estimation of Mg from Milk of Magnesia.
17. Estimation of Phosphoric acid spectrophotometrically from cold drink.
18. Determine amount of magnesium from given talcum powder
19. Determination of Nitrogen from Fertilizer by Kjeldhal’s method.
20. Analysis of Saponification value from oil/Detergent.
21. Analysis of Iodine value from oil.
22. Analysis of pesticide residue by Gas Chromatography.

References:
1. Pharmacopoeia of India
2. Biochemical methods, Sadashivam and Manickem, New Age international Publication
3. General Chemistry Experiments, by Elias, Universities Press
5. Experiments in chemistry by D. V. Jahagirdar (Himalaya publication)
7. Quantitative Inorganic Analysis including Elementary Instrumental Analysis by A. I. Vogel’s, 3rd Ed. ELBS (1964)
9. Quantitative Inorganic Analysis including Elementary Instrumental Analysis by A. I. Vogels, 3rd Ed. ELBS (1964)
10. Standard methods of chemical analysis by F. J. Welcher
11. Biochemical Methods, Sadashivam and Manickem, Narosa publication
12. Indian Pharmacopoeia volume –I and II
13. Experiments in chemistry by D. V. Jahagirdar, Himalaya publication
Course Code: CHA-5306
Course Title: Analytical Chemistry Practical VI
(Analysis of Bioanalytical Fluids Practicals) (Any Fifteen)
(Credit 4)

1. Estimation of caffeine from Tea leaves.
2. Determine the Thiamine by spectroflurometry.
3. Detection of Amino acid using ninhydrin by spectrophotometry.
4. Estimation of protein from food by Lowry method.
5. Estimation of Ketone bodies from given sample.
8. Determination of Glucose from blood by enzyme method.
10. Estimation of Vit-C by titration method.
11. Determination of Iron from syrup by spectrophotometry.
14. Analysis of Quinine sulphate by spectroflurometry
16. Amount of carboxylic group by 2,4-DNP.
17. Assay of detergent.
18. Determination of chloride in sodium sulphate (Limit test for chloride)
19. Preparation of Aspirin from salicylic acid.
20. Estimation of fluoride in tooth paste.
21. Estimation of aldehyde in lemon oil and cinnamon oil.

Reference:
1 Organic Laboratory technique a micro scale approach by Donald L. Pavia, Gary M.Lampman, George S. Kriz, Randall G. Engel second edition.
3 R. Ikan; Natural products.
4 Peach and Tracy; Methods of Plant analysis Vol. VII.
5 Pavia and others; Organic Laboratory Techniques, (Second Edition,1995),Sannders Series (Harcosft Brace)
Objectives:
1. To understand scientific methods for searching chemical literature
2. To get familiar with software tools required for such survey
3. To analyze Plagiarism
4. Introduction to chemistry research journals

| Unit I | Literature Survey in Chemistry: Use of computer browsing for literature search and downloading –basics of internet services –various sources of abstracts, articles and papers of browsing and downloading, Techniques of conversion from one format to another Structure drawing programs and their uses –searches through structure. Use of Literature, Knowledge of National and International Journals, Impact Factor, Citation-Index, h index, SCI Journals, Plagiarism. | 15L |

Reference:

1. Pubmed
2. Scifinder
3. Sciencedirect
4. Highwire publication
5. Googlescholar
6. Reaxys
7. Scirus.com
Scheme of Analytical Chemistry Practical Examination
CHA5305: Practical Course I : Industrial Materials Analysis (Any Fifteen)
CHA-5306: Practical Course II : Analysis of Bioanalytical Fluids Practicals (Any Fifteen)

Note :
1. The practical examination in the subject will be conducted for SIX HOURS duration.
2. The practical examination in the subject will be conducted for 50 marks.
3. Certified Biochemistry Laboratory Journal is compulsory for the examination.
4. Oral/viva examination is compulsory
5. Book/s printed material, cyclostyled or typed material will be allowed during the practical examination.
6. Examiners will arrange Q1 and Q2 experiments for conducting practical examination.
7. Lucky draw system will be followed for the students for practical examination by the examiners.
8. Log table and calculators are allowed during the practical examination.
9. Mobile/s is/are strictly not allowed during the practical examination in laboratory.

The candidate has to perform the following question/s for practical examination.

Q 1	Major Experiment (Any ONE)	20 Marks
Q 2	Minor Experiment (Any ONE)	20 Marks
Q 3	Oral /Viva	05 Marks
Q 4	Laboratory Journal	05 Marks
Total Marks		50 Marks
Semester IV

Course Code: CHA5401
Course Title: Analytical Toxicology, Forensic and Food Analysis
(4 Credits)

Objectives:
1. To understand concept of analytical toxicology and role of clinical toxicology in laboratory.
2. To know different methods of isolations and constituents of toxins.
3. To understand different terminologies in Narcotics.
4. To understand Prohibition control regulation offence and penalties for Psychotropic substances.
5. To give an introduction to forensic analysis.
6. To study methods of DNA Profiling, alcohol in body fluids, drug identification, blood analysis, fingerprint analysis and explosives analysis.
7. To understand concept and classification of carbohydrates, proteins and lipids.
8. To determine different parameters and properties by using different methods.

<table>
<thead>
<tr>
<th>Unit-I</th>
<th>Analytical Toxicology:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Introduction: Diagnosis of acute poisoning, Treatment of acute poisoning. The role of the clinical toxicology laboratory</td>
<td></td>
</tr>
<tr>
<td>b. Toxicology: Isolation, identification and determination of following, Narcotics- heroin and cocaine, Stimulants- caffeine, amphetamines, Depressants- Barbiturates, Benzodiazepines</td>
<td></td>
</tr>
<tr>
<td>c. Narcotics and Psychotropic substances Act.: Def – addict, cannabis (hemp), Coca derivative, coca leaf, Manufacture medicinal cannabis, narcotic drug, opium , opium derivative, opium poppy, poppy straw, psychotropic substance, Illicit traffic, Prohibition control regulation offence and penalties.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit-II</th>
<th>Forensic Analysis:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Introduction to Forensic Analysis: Overview, Destructive and Non destructive techniques, Data interpretation.</td>
<td></td>
</tr>
<tr>
<td>b. Blood Analysis: Blood preservation and ageing effects, Analysis of blood components and exogenic substances, blood stain analysis.</td>
<td></td>
</tr>
<tr>
<td>c. DNA Profiling: DNA and its polymorphism, DNA typing procedures-RFLP, PCR, MVR-PCR, Dot-blot, AMP-FLP, STR, other methods, paternity testing, applications, interpretation and practical use.</td>
<td></td>
</tr>
<tr>
<td>d. Alcohol in body fluids: Legal background, Sampling and sample preservation, analysis-GC, IR, enzymatic and other methods.</td>
<td></td>
</tr>
<tr>
<td>e. Systematic Drug Identification: Classification and categories of compounds involved, analytical strategy-EMIT, FPIA, TLC, LC, GC-MS, etc., requirements for identification, possibilities & limitations of selected techniques, isotope detection method with numericals, new drug groups.</td>
<td></td>
</tr>
<tr>
<td>f. Fingerprint Analysis: Latent fingerprints; optical, physical, physico-chemical & chemical detection methods; fingerprints</td>
<td></td>
</tr>
<tr>
<td>Unit III</td>
<td>Food Analysis:</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>g. Explosives:</td>
<td>Types, analytical methods for identification of low and high explosives in post-blast debris.</td>
</tr>
</tbody>
</table>

|-----------------|---|

References:

4. Forensic pharmacy by B.S Kuchekar, and A.M Khadatere Nirali Prakshan)
5. Shreves’ Chemical Process Industries fifth edition by George Austin Mg Graw Hill
6. Practical Pharmaceutical Chemistry by Becket
7. Basic Analytical Toxicology Published by WHO, By R. J. Flanagan, R. A. Braithwaite, S. S. Brown Available Online
9. Pearson’s chemical analysis of food
Course Code: CHA5402
Course Title: Analytical Spectroscopy
(4 Credits)

Objectives:
1. To understand the concept of different spectroscopic techniques.
2. To know principle and instrumentation of electron spectroscopy, chemiluminescence, fluorescence and phosphorescence, surface characterization techniques and XRD.
3. To understand applications of spectroscopic techniques.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit-I</td>
<td>Electron spectroscopy: Introduction, principle of ESCA, electron spectroscopy for chemical analysis, ESCA satellite peaks, spectral splitting, ESCA chemical shifts, Apparatus used for ESCA, X-ray source, samples, types of Analyzers, Detectors, Chemical analysis using ESCA, Applications, Auger electron microscopy, Ultraviolet photoelectron spectroscopy.</td>
</tr>
<tr>
<td>Unit-II</td>
<td>Chemiluminescence: Introduction, principle, types, measurement of chemiluminescence, instrumentation, quantitative chemiluminescence, gas phase chemiluminescence analysis, chemiluminescence titrations, electro-chemiluminescence</td>
</tr>
<tr>
<td>Unit III</td>
<td>Fluorescence and phosphorescence: Introduction of Fluorescence, Photo luminescent theory, Electron transitions during photoluminescence, factors affecting photoluminescence, Luminescent apparatus,Optical extractive sources, wavelength selectors, detectors ad readout devices, photo luminescent spectra, photo luminescent analysis, analysis of non-photoluminating compounds specific examples of analysis using photoluminescence, application of Fluorescence- Polarization Assays in Small Molecule Screening.</td>
</tr>
<tr>
<td>Unit V</td>
<td>X-ray Methods of Analysis: Principle, Theory- X-ray spectral lines, X-ray tube, X-ray emission, Absorptive apparatus, X-ray Sources, Collimation, sample handling, wavelength dispersive devices, Energy dispersive devices, detectors, readout device, Powder XRD and Single crystal XRD, Chemical analysis using X-ray absorption, X-ray Fluorescence- instrumentation and chemical analysis, X-ray Diffraction, Chemical analysis with X-ray diffraction, numerical problems.</td>
</tr>
</tbody>
</table>

References:
3 Instrumental methods of chemical analysis by Willard, Dean and Merittee- Sixth edition.
6 Analytical Chemistry, Ed. by Kellner, Mermet, otto, Valcarcel, Widmer, Second Ed. Wiley–VCH.
7 Vogel’s Textbook of quantitative Chemical Analysis, sixth Ed., Mendham, Denney, Barnes, Thomas, Pub: Pearson Education.
8 Electron microscopy in the study of material, P. J Grundy and G. A Jones, Edward Arnold.
9 Solid state chemistry by D K Chakrabarty.
Course Code: CHA5403
Course Title: Consumer Products and Polymer Analysis
(4 Credits)

Objectives:
1. To study general scheme of analysis for soap with different parameters.
2. To determine different constraints from synthetic detergent.
3. To study concept of different test for paints and pigments.
4. To identify plasticizers, binders and thinners.
5. To introduce types of petroleum products and identify it by different methods.
6. To understand concept and classification of polymer.
7. To learn different types of polymerization techniques.
8. To understand concept of chemical analysis of polymer based on different instrumental techniques.
9. To learn thermal behavior, electrical, optical and chemical properties of polymers.
10. To analyze average molecular weight of polymer and understand concept of molecular weight distribution curve.
11. To understand the concept of end group analysis of polymers.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Analysis of Soaps and Detergents:</th>
<th>10L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a. Soaps: General scheme of analysis, sampling, moisture and volatile matter, active ingredient and equivalent combined SO₃, other specific tests for soaps (such as total fatty acids, Free alkali or free acid, titer test, Iodine value, saponification value).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Tests for synthetic detergents: Moisture, unsulfonated matter, combined alcohols, Available oxygen (perborate), alkalinity and phosphate, anionic detergent</td>
<td></td>
</tr>
</tbody>
</table>

| Unit-II | Analysis of Paints and Pigment : Introduction, test on the total coating, water content, separation of pigment binder, and thinner of solvent type coating, Identification of the binder, Identification of polymer resins and oils, Identification of plasticizer, Analysis of the vehicle, Identification and Analysis of pigments, Titanium dioxide, antimony oxide, analysis of colored pigments. | 8L |

| Unit III | Analysis of Petroleum and Petroleum Products: Introduction, determination of flash and fire point by Pensky Marten's apparatus, Saybolt viscometer, API gravity by hydrometer method, cloud and pour point, aniline point and mixed aniline point, doctor test for petroleum distillate, lead anti knock compounds, vapour pressure by Reid method. | 8L |

| Unit IV | Introduction of Polymers: Brief history to polymers, classification of polymers, introduction to polymerization- chain polymerization, step polymerization, miscellaneous polymerization, Polymerization techniques-bulk, suspension, emulsion, melt polycondensation, solution polycondensation, interfacial condensation, solid and gas phase polymerization | 6L |

| Unit V | Analysis and Testing of Polymers:
a. Chemical analysis of polymers: X-ray diffraction analysis, thermal analysis (TGA, DTA and DSC). | 16L |
Physical Testing of Polymers

- **b.** Physical testing of polymers: Mechanical properties, Fatigue testing, impact testing, tear resistance, hardness, abrasion resistance.
- **c.** Thermal properties: Softening temperature, flammability, Heat deflection temperature, Vicat softening temperature, thermal conductivity, thermal expansion.
- **d.** Optical properties: transmittance, color, gloss, haze and transparency.
- **e.** Electrical properties: dielectric constant and loss factor, resistively, dielectric strength, electronic properties.
- **f.** Chemical properties: Immersion test, vapor permeability, staining resistance, solvent stress cracking resistance, environmental stress cracking.

Molecular Weight and Size of Polymers

Unit VI

Molecular Weight and Size of Polymers: Average molecular weight, Number average and weight average molecular weight, size of polymers, molecular weight distribution-fractionation methods (fractionation precipitation, fractional elution, gel permeation chromatography), determination of molecular weight by- End group analysis, colligative properties measurements, dilution solution viscosity method (Huggins and Kraemer viscosity plot), molecular weight distribution curve (simple representation of MWD), problem solving.

References:

2. Standard methods of water and waste water analysis by A.K. De.
11. Textbook of Polymer Chemistry by M.S. Bhatnagar, S. Chand publication.
Elective Papers (Any Two)

Course Code: CHA5404
Course Title: Bioanalytical Methods
(2 Credits)

Objectives:
1. To introduce sampling methods for collection of blood and urine sample.
2. To study determination of different constituents from blood sample.
3. To study determination of different constituents from urine sample.
4. To study various types of human nutrients.
5. To study determination of carbohydrates from human nutrients by different methods.
6. To study determination of vitamins from human nutrients by Kjeldhal method and Lowry method.
7. To study determination of lipids from human nutrients by different methods.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit-II</td>
<td>Human-Nutrition:</td>
<td>20L</td>
</tr>
<tr>
<td>a.</td>
<td>Carbohydrates- Definition, functions and Analysis of total carbohydrates by Anthrone method, starch using Anthrone reagent, pectin by gravimetric method, and crude fibres.</td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>Proteins- Definition, functions and analysis protein by Kjeldhal method and Lowry method, total free amino acids, methionine in food grain.</td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>Vitamins- Definition, functions and analysis of Retinol, Vitamin D₃, Vitamin E, Vitamin B₁, Vitamin B₂, Vitamin B₆, Nicotinic acid, Niacin and Vitamin C.</td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td>Lipids- Definition, functions and analysis of free fatty acids, saponification value, iodine value and peroxide value.</td>
<td></td>
</tr>
</tbody>
</table>

References:

1 Practical Clinical Biochemistry, Gowenlock, CBS published, 6th Ed.
2 Chemical analysis of food by Pearson.
3 Practical Pharmaceutical Chemistry by Beckett
4 Biochemical methods of analysis S. Sadasivam and A. Manickam, Narosa Publication.
Course Code: CHA5408
Course Title: Pollution Monitoring and Control.
(2 Credits)

Objectives:
1. To study methods of removal heavy toxic elements.
2. To understand different recovery techniques of waste water.
3. To understand hazardous effects of SO2.
4. To introduce economics of SO2 control measures.
5. To study determination of nitrogen in various form of samples.
6. To understand various effluent analysis processes.
7. To introduce photochemistry of air pollutions.
8. To introduce the concept of waste water treatment and analysis.
10. To study determination of different properties of water from waste.
11. To estimate toxic elements from waste water

<table>
<thead>
<tr>
<th>Unit I</th>
<th>Removal of Heavy Toxic Metals:</th>
<th>8L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chromium, Mercury, Lead, Cadmium, Arsenic, analytical methods of determination of small amount of the metal pollutants, copper recovery, treatments of waste to remove heavy metals, recovery techniques.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit II</th>
<th>Removal of Sulphur Dioxide and Nitrogenous Materials</th>
<th>10L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Origin of SO2 and its hazards, Analysis of SO2 control methods, desulphurization of fuels, Indian coal and Indian crude oil. Economics of SO2 control measures. NOx, dissolved NOx, nitrites, ammonia, Urea and other nitrogen compounds in the effluent fertilizers explosive, industrial effluents, effluents from nitro aromatic industries, analytical methodology, photochemistry of air pollutions.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit III</th>
<th>Waste Water Analysis and Treatment</th>
<th>12L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water pollutants, purpose of chemical analysis, sampling of water, pH of water, specific conductance, determination of acidity and alkalinity, Chemical oxygen demand, biological oxygen demand, dissolved oxygen, determination of aluminium, boron, calcium, carbon dioxide, chloride, residual chlorine, Chlorine demand, total hardness, nitrate, nitrite, ammonia nitrogen, sulphate, sulphide, anionic detergents, tannin and lignin.</td>
<td></td>
</tr>
</tbody>
</table>

References:
1. Environmental pollution analysis, S.M. Khopkar
2. Environmental pollution analysis, A.K. De
3. Pollution control in processes industries, S.P. Mahajan (J.W)
4. Industrial safety handbook, W. Handley
5. Environmental Chemistry, B. K. Sharma
Course Code: CHA5409
Course Title: Nanotechnology
(2 Credits)

Objectives:
1. To study fundamental concepts and various synthesis route of Nanomaterials.
2. To understand applications of Nanomaterials in various field.
3. To give an overview of nanotechnology in biomedical application.
4. To study use of nanomaterials in drug delivery, biomedical sensors and biosensors etc.
5. To study applications of nanomaterial as a probe for bioimaging.
6. To give an overview of environmental impacts of nanotechnology.
7. To study engineered nonmaterial's in the body.
8. To study toxicological health effects of nanomaterial.

<table>
<thead>
<tr>
<th>Unit I</th>
<th>Introduction to Nanomaterials:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Unit II</th>
<th>Biomedical Applications:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nanotechnology in biomedical application, application of micro and nano electrochemical device to drug delivery, biomedical sensors and biosensors, quantum dot technology in cancer treatment, nanoparticle probe for bioimaging</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit III</th>
<th>Environmental Impacts of Nanotechnology:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction, engineered nonmaterial's in the body, routes of entry, toxic mechanisms, environmental implications of nanoparticles, toxicological health effects, relevant parameters in nanoparticle toxicology, integrated concept of risk assessment of nanoparticles</td>
</tr>
</tbody>
</table>

References:
1. An Introduction to Nanoscience and Nanotechnology by Alain Nouailhat, John Wiley & Sons, Inc.
1. Determination of commercial vinegar by potentiometric titration and its confirmation by conductometry.
2. Determination of boric acid by conductometry.
3. Determination of calcium from dairy whitener by Flame photometry.
4. To determine amount of p-nitrophenol from the given mixture by spectrophotometric titration using standard NaOH solution.
5. To study decomposition pattern of calcium oxalate/polymer by Thermo gravimetric analysis.
6. To determine constant of ferric thiocyanate complex by Ostwald method spectrophotometrically.
7. To determine amount of chloride in water sample by terbidimetric method.
8. Determine chain linkage/molecular weight of polymer sample by viscosity measurement.
10. To determine concentration of Pb (II) in solution by amperometric titration with potassium dichromate solution.
12. Determination of chemical oxygen demand (COD) from water sample.
13. Estimation of Total hardness from water sample.
14. Analysis of zinchrome Pigment for Zn and Cr.
15. Analysis of Ti by Spectrophotometrically from Titanium pigment.
16. Determination of Fe from Detergent.
17. Analysis of Acid value from oil.
20. Removal of dyes on activated charcoal by spectrophotometric measurement.
21. XRD Spectra analysis.
22. Industrial Visit / Lab Visit.

References:

1. Pharmacoeopia of India
2. Biochemical methods, Sadashivam and Manickem, New Age international Publication
3. General Chemistry Experiments, by Elias, Universities Press
5. Experiments in chemistry by D. V. Jahagirdar (Himalaya publication)
7. Quantitative Inorganic Analysis including Elementary Instrumental Analysis by A. I. Vogel's, 3rd Ed. ELBS (1964)
9. Quantitative Inorganic Analysis including Elementary Instrumental Analysis by A. I. Vogels, 3rd Ed. ELBS (1964)
10. Standard methods of chemical analysis by F. J. Welcher
11. Environmental Chemistry by A. K. De
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Biochemical Methods, Sadashivam and Manickem, Narosa publication</td>
</tr>
<tr>
<td>13</td>
<td>Indian Pharmacopoeia volume –I and II</td>
</tr>
<tr>
<td>14</td>
<td>Experiments in chemistry by D. V. Jahagirdar, Himalaya publication</td>
</tr>
<tr>
<td>15</td>
<td>Practical Pharmaceutical Chemistry, 4th Ed. part-2, Beckett, Stenlake</td>
</tr>
<tr>
<td>16</td>
<td>Standard Instrumental methods of Chemical Analysis, F. J. Welcher</td>
</tr>
</tbody>
</table>
Course Code: CHA5406
Course Title: Analytical Chemistry Practical VIII
(Analysis of Food and Pharmaceutical Products Practicals)
(Any Fifteen) / Project (Projects minimum 30%)
(4 Credits)

1. Estimation of Urea from blood samples.
2. Determination of phosphorous content in fruit juice by spectrophotometer
3. Estimation of tannin from Tea sample.
4. Estimation of Aspirin from given tablet by Spectrophotometer
5. Isolation of lycopine from tomato
6. Estimation of cholesterol by spectrophotometry
7. Analysis of Riboflavin from sample by spectrofluorometry.
8. To determine the amount of carbohydrate in potato by Anthrone method.
10. Determination of moisture content using Karl-Fischer titrator.
11. Determination of equivalent weight of carboxylic acid by titration with Std. alkali solution.
14. Estimation of calcium from tablet by using flame photometry.
15. Limit test of Tin and Zinc from canned food.
16. Analysis of drugs by non-aqueous titration (Glycine, Sodium benzoate, Sulpha drugs)
17. Simultaneous determination of Ca, Fe & P in milk samples by spectrophotometrically
18. Estimation of Vit-C in ascorbic acid by KBrO₃ method.
19. Determination of Alcohols by Gas Chromatography
20. Estimation Of Amino Acid by paper chromatography

Reference:

1 Organic Laboratory technique a micro scale approach by Donald L. Pavia, Gary M. Lampman, George S. Kriz, Randall G. Engel second edition.
3 R. Ikan; Natural products.
4 Peach and Tracy; Methods of Plant analysis Vol. VII.
5 Pavia and others; Organic Laboratory Techniques, (Second Edition, 1995), Sannders Series (Harcofst Brace)
Course Code: CHA5407
Course Title: Self-Learning Course (1 Credits)

Objectives:
1. To understand the concept of nanotechnology in biomedical application
2. Student should able to write summery on above any topic with reference to research paper.
3. Student’s interest in research project should able to give seminar on their topic of interest.

<table>
<thead>
<tr>
<th>Unit I</th>
<th>Nanotechnology</th>
<th>15L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a. Introduction to Nanomaterials,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Classification of Nanostructured Materials,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Properties of Nanomaterials (surface, electrical, optical, magnetic).</td>
<td></td>
</tr>
</tbody>
</table>

References:
2. An Introduction to Nanoscience and Nanotechnology by Alain Nouailhat, John Wiley & Sons, Inc.
Scheme of Analytical Chemistry Practical Examination
CHA5405 : Practical Course III : Analysis of Consumer Products (Any Fifteen)

CHA5406: Practical Course IV : Analysis of Food and Pharmaceutical Products Practicals (Any Fifteen) / Project (Projects minimum 30%)

Note:
1. The practical examination in the subject will be conducted for SIX HOURS duration.
2. The practical examination in the subject will be conducted for 50 marks.
3. Certified Biochemistry Laboratory Journal is compulsory for the examination.
4. Oral/viva examination is compulsory
5. Book/s printed material, cyclostyled or typed material will be allowed during the practical examination.
6. Examiners will arrange Q1 and Q2 experiments for conducting practical examination.
7. Lucky draw system will be followed for the students for practical examination by the examiners.
8. Log table and calculators are allowed during the practical examination.
9. Mobile/s is/are strictly not allowed during the practical examination in laboratory.

The candidate has to perform the following question/s for practical examination.

<table>
<thead>
<tr>
<th>Q 1</th>
<th>Major Experiment (Any ONE)</th>
<th>20 Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q 2</td>
<td>Minor Experiment (Any ONE)</td>
<td>20 Marks</td>
</tr>
<tr>
<td>Q 3</td>
<td>Oral /Viva</td>
<td>05 Marks</td>
</tr>
<tr>
<td>Q 4</td>
<td>Laboratory Journal</td>
<td>05 Marks</td>
</tr>
<tr>
<td></td>
<td>Total Marks</td>
<td>50 Marks</td>
</tr>
</tbody>
</table>

Research Project

Note:
1. Certified RESEARCH PROJECT THESIS is compulsory for the examination.
2. The project presentation will be conducted for SIX HOURS duration.
3. The project presentation will be conducted for 100 marks.
4. Oral/viva examination is compulsory
5. Mobile/s is/are strictly not allowed during the project presentation.

Research Project Work is assessed as follows,

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Title of Project</td>
<td>5 Marks</td>
</tr>
<tr>
<td>2</td>
<td>Experimental Work</td>
<td>15 Mark</td>
</tr>
<tr>
<td>3</td>
<td>Characterization of product</td>
<td>20 Marks</td>
</tr>
<tr>
<td>4</td>
<td>References / Reference Work</td>
<td>10 Marks</td>
</tr>
<tr>
<td>5</td>
<td>Project Thesis</td>
<td>5 Marks</td>
</tr>
<tr>
<td>6</td>
<td>Preparation slides</td>
<td>10 Marks</td>
</tr>
<tr>
<td>7</td>
<td>Overall Presentation</td>
<td>20 Marks</td>
</tr>
<tr>
<td>8</td>
<td>Defence of Project work</td>
<td>10 Marks</td>
</tr>
<tr>
<td>9</td>
<td>Purpose / Benefit of Project</td>
<td>5 Marks</td>
</tr>
</tbody>
</table>