

F.Y. B.Sc. (Electronic Science) for Computer Science Students

Particulars	Paper	Title of Paper	No. of
	code		Credits
Semester I	ELC1101	Basic Circuit Theory and	2
		Networks	
	ELC1102	Digital Electronics	2
	ELC1103	Basic Circuit Theory, Networks and Digital	2
		Electronics Lab	
Semester II	ELC1201	Semiconductor Devices	2
	ELC1202	Sequential Circuits	2
	ELC1203	Semiconductor Devices and Sequential Circuits Lab	2

F.Y. B.Sc. Semester I

Theory Paper – 1 (ELC1101): Basic Circuit Theory and Networks

[Credits-2: Lectures-36]

Objectives:

- 1. To get familiar with basic circuit elements and passive components
- 2. To understand DC circuit theorems and their use in circuit analysis
- 3. To know the AC circuits and related terminologies

Unit-I	Basic Circuit Concepts	12 L
	Concept of Ideal Voltage and Current source, internal resistance,	
	dc sources(voltage/current)	
	Study of basic circuit elements and passive components (working	
	principle, circuit symbols, types, specifications and applications):	
	Resistor, Capacitor, Inductor, Transformer, Relays, Batteries,	
	Switches, Fuses, Cables, Connectors.	
Unit-II	Circuit Analysis and Network theorems	16 L
	Circuit and Network terminology, Ohms law, series and parallel	
	circuits of resistors, capacitors and inductors, voltage and current	
	dividers, Kirchhoff's Laws, (KCL, KVL), Superposition theorem,	
	concept of black box, Thevenin's theorem, Norton's theorem,	
	Maximum power transfer theorem, RC Circuits- Charging and	
	discharging with initial charge, DC Response of Series RLC	
	Circuits.	
Unit-III	AC Circuits	8 L
	Sinusoidal Voltage and Current, Definition of Instantaneous, Peak,	
	Peak to Peak, Root Mean Square and Average Values.	
	Voltage-Current relationship in Resistor, Inductor and Capacitor,	
	Phasor,	
	Passive Filters: Low Pass, High Pass, Band Pass and Band Stop.	
	Resonance in Series and Parallel RLC Circuits, Frequency	
	Response of Series and Parallel RLC Circuits, Quality (Q) Factor	
	and Bandwidth.	
D C		

References:

- 1. Theory and problems of basic circuit analysis, Schaum's outline series, John O'malley (2004)
- 2. Electric Circuits, Schaum's outline series, S. A. Nasar, Tata Mc Graw Hill (2004)
- 3. Electric circuits, Schaum's outline series, M. Nahvi and J. Edminister, Tata McGraw Hill (2005)
- 4. Basic Electronic, B. Grob, Mc Graw Hill (2007)

F.Y. B.Sc. Semester I Theory Paper – 2 (ELC1102): Digital Electronics [Credits-2: Lectures-36]

Objectives:

- 1. To get familiar with various numbers systems and Boolean algebra.
- 2. To study basic building block of digital electronics like logic gates and arithmetic circuits.
- 3. To learn about Combinational circuits

Unit-I	Number System and codes	10 L
	Decimal, binary, octal, hexadecimal number systems Conversion	
	of number from one number system to another including decimal	
	points	
	Binary addition, subtraction, multiplication, division, 1's and 2's complement method of subtraction	
	BCD code numbers and their limitations, addition of BCD coded numbers, conversion of BCD to decimal and vice-versa, Excess-3	
	code, gray code, binary to gray and gray to binary conversion,	
	Concept of parity, single and double parity, error detection and	
	correction using parity	
Unit-II	Logic gates and Boolean Algebra	12 L
	Logic gates, positive and negative logic, pulse waveform, definition,	
	symbols, truth tables, pulsed operation of NOT, OR, AND, NAND,	
	NOR, EX-OR, EX-NOR gates, NAND and NOR as universal logic	
	gates	
	Rules and laws of Boolean algebra, logic expression, Demorgan's	
	theorems, their proof, Sum of products form (minterm), Product of	
	sum form (maxterms), simplification of Boolean expressions with	
	the help of Rules and laws of Boolean algebra, Karnaugh mapping	
	techniques upto 4 variables and their applications for simplification	
	of Boolean expression	
Unit-III	Arithmetic circuits	4 L
	Half adder, full adder circuits and their operation, subtractor, half	
	and full, Comparator, Parallel binary adder,	
Unit-IV	Combinational Circuits	10 L
	Multiplexer(2:1 and 4:1), Demultiplexer (1:2 and 1:4), Encoder &	
	decoder, Priority encoder, 3 X 4 matrix keyboard Encoder, Code	
	converters(Decimal to binary, Hexadecimal to binary, BCD to	
	decimal),BCD to seven segment decoder.	
Reference	Pes:	
	aital Dringingla Cahayan'a aytling gariag Tata Ma Crayy Hill (2006)	

- 1. Digital Principals, Schaum's outline series, Tata Mc Graw Hill (2006)
- 2. Digital Fundamentals, T. L. Floyld, Pearson Education (2013)
- 3. Digital System Design, Morris Mano, Pearson Education (2014)

F.Y. B.Sc. Semester I

Practical Paper – 1 (ELC1103): Basic Circuit Theory, Networks and Digital Electronics Lab

[Credit-2]

1.	Study of Series and Parallel combination of Resistors
2.	Verification of Kirchhoff's Law.
3.	Verification of Thevenin's Theorem.
4.	Verification of Norton's theorem.
5.	Verification of Superposition Theorem.
6.	Verification of the Maximum Power Transfer Theorem
7.	Measurement of Amplitude, Frequency & Phase difference using CRO.
8.	Designing of a Low Pass RC Filter and study of its Frequency Response.
9.	To verify and design AND, OR, NOT and XOR gates using NAND gates.
10.	To convert a Boolean expression into logic gate circuit and assemble it using
	logic gate IC's.
11.	Design a Half and Full Adder
12.	Design a Half and Full Subtractor.
13.	De Morgan's theorem verification

Students have to perform any 8 experiments from the above list and 2 activities like simple Electronic circuit design (Electronics project), seminar on advanced topic, Information collection on any latest research topic etc. in consultation with respective teacher.

F.Y. B.Sc. Semester II

Theory Paper – 1 (ELC1201): Semiconductor Devices

[Credits-2: Lectures-36]

Objectives:

- 1. To get familiar with semiconductor basics
- 2. To study the construction and characteristics of semiconductor devices

Unit-I	Semiconductor Basics	4 L
	Classification of materials, Introduction to Semiconductor	
	Materials, Intrinsic Semiconductors and Extrinsic semiconductors,	
	Energy Band in Solids, Fermi Level for Intrinsic & Extrinsic	
	Semiconductors, Donors, Acceptors, Dependence of Fermi Level	
	on Temperature and Doping Concentration,	
Unit-II	PN junction diode	10 L
	Study of semiconductor devices with reference to symbol, working	
	principle, I-V characteristics, parameters, specifications: diode	
	(Formation of Depletion Layer, Space Charge at a Junction, barrier	
	potential) zener diode, light emitting diode, photo diode, solar cell	
Unit-III	Bipolar junction transistor	14 L
	PNP and NPN Transistors, Basic Transistor Action, Emitter	
	Efficiency, Base Transport Factor, Current Gain, Bipolar Junction	
	Transistor (BJT) symbol, types, construction, working principle, I-	
	V	
	characteristics, parameters, specifications.	
	Biasing circuits voltage divider, collector feedback bias and	
	emitter feedback bias, DC load line, Q point and factors affecting	
	the stability, Transistor configurations - CB, CC and CE	
Unit-IV	UJT, JFET and MOSFET	8 L
	Symbol, types, construction, working principle, I-V characteristics,	
	Specifications parameters of: Uni-Junction Transistor	
	(UJT),Junction Field Effect Transitor (JFET), Metal Oxide	
	Semiconductor FET (MOSFET), comparison of JFET, MOSFET	
	and BJT	

References:

- 1. Solid state Electronic Devices, B. G. Streetman and S. Banerjee, Pearson Education (2006)
- 2. Basic Electronics and Linear circuits, N. N. Bhargava, D. C. Kulshreshtha, S. C. Gupta, Tata Mc Graw Hill (2008)
- 3. Semiconductor Device Physics and Design, Umesh k. Mishra and Jasprit Singh, Springer (2008)

F.Y. B.Sc. Semester II

Theory Paper – 2 (ELC1202): Sequential Circuits

[Credits-2: Lectures-36]

Objectives:

- 1. To get familiar with various sequential circuits.
- 2. To study basic applications of sequential circuits.

Unit-I	Flip flops	
	Latch, SR-latch, D-latch, Flip-flop, difference between latch and	
	flip-flop, S-R, D flip-flop their operation using waveform and truth	12 L
	tables, race around condition, JK flip-flop, master slave, T flip flop	
	and their operation using waveform and truth tables	
Unit-II	Sequential Circuits	
	Counters: Ripple, Decade counter, up counter, down counter, Up-	
	Down counter, Concept of modulus counters, Shift registers: SISO,	14 L
	SIPO, PISO, PIPO, Ring counter, universal 4-bit shift register,	
Unit-III	Digital Circuits	
	Seven segment display and its types, Shift register as rolling	
	display, Interfacing of Thumbwheel switch to Seven Segment	10 L
	Display, Counter as digital clock Diode Matrix ROM.	

References:

- 1.Digital Electronics: Jain R.P., Tata McGraw Hill
- 2. Digital Principles and Applications: Malvino Leach, Tata McGraw-Hill.
- 3. Digital Fundamentals: Floyd T.M., Jain R.P., Pearson Education

F.Y. B.Sc. Semester II

Practical Paper – 2 (ELC1203): Semiconductor Devices and Sequential Circuits Lab [Credit-2]

1.	Study of the half wave rectifier and Full wave rectifier.
2.	Study of the I-V Characteristics of Diode – Ordinary and Zener Diode.
3.	Study of the I-V Characteristics of the CE configuration of BJT and obtain ri,
	ro, β
4.	Study of the I-V Characteristics of the Common Base Configuration of BJT
	and obtain ri, . ro, α.
5.	Study of transistor as switch / inverter
6.	Designing of a Single Stage CE amplifier
7.	Study of the frequency response of Common Source FET amplifier
8.	Study of RS, JK and D flip flops using NAND gates
9.	Study of Flip flop ICs
10.	Build and Test 4:1 Multiplexer and 1:4 Demultiplexer using gates
11.	Study of decade counter IC circuit configurations

Students have to perform any 8 experiments from the above list and 2 activities like simple Electronic circuit design(Electronics project), Seminar on advanced topic, Information collection on any latest research topic etc. in consultation with respective teacher.