Deccan Education Society's FERGUSSON COLLEGE, PUNE (AUTONOMOUS)

SYLLABUS FOR S Y B Sc PHYSICS

Effective from Academic Year 2017-2018

Preamble:

Fergusson College is awarded academic autonomy by the UGC beginning the year 2016-17. This autonomy is for a period of six years. We shall be following the semester pattern for academic transactions and the Credit Based Assessment System will be followed for assessment. The curriculum for the graduate programme in Physics is designed to cater to the requirements of the Autonomy and the Credit system following the UGC guidelines.

Physics is one of the oldest branches of natural sciences. It forms the foundation of the scientific process.

The programme is aimed to be more learning centric than teaching centric. The courses are designed so that a student progressively develops a deeper understanding of various aspects of physics.

Physics is learnt more through experimentation than only through classroom sessions. The experiments are designed to develop logical thinking and analytical ability. Reading between lines is important and some open ended experiments, assignments and small projects are designed to develop these skills.

Continuous assessment is an integral part of the credit system. This will help students learn their subjects systematically and thoroughly.

The under graduate programme in Physics is spread over three years with two semesters every year. There will be two theory courses and one laboratory course each semester for the first and the second year. For the third year, there will be six theory courses and three laboratory courses each semester.

Objectives:

- 1. To explore different areas of physics.
- 2. To develop theoretical foundation and experimental skills to study various natural phenomena.
- 3. To train students for in depth study of physics.
- To encourage students to explore applications of physics in various walks of life.
- 5. To inculcate research culture by introducing projects at the final year of the course.

Deccan Education Society's

Fergusson College (Autonomous), Pune Faculty of Science Course structure for B.Sc. (Physics)

Semester	Course	Title of the Course	Core /	No. of
	Code		Elective	Credits
Ι	PHY1101	Mechanics and Properties of matter	CORE-1	2
	PHY1102	Heat and thermodynamics	CORE-2	2
	PHY1103	Practical Course-1	PCORE-1	2
П	PHY1201	Introduction to Mathematical Physics	CORE-3	2
	PHY1202	Electricity and Magnetism	CORE-4	2
	PHY1203	Practical course II	PCORE-2	2
III	PHY2301	Oscillations, Waves and Sound	CORE-5	3
	PHY2302	Principles and Applications of Optics	CORE-6	3
	PHY2303	Practical course III	PCORE-3	2
IV	PHY2401	Introductory Quantum Physics and Relativity	CORE-7	3
	PHY2402	Measurement Techniques in Physics	CORE-8	3
	PHY2403	Practical course IV	PCORE-4	2
V	PHY3501	Mathematical Methods in Physics	CORE-9	3
	PHY3502	Solid State Physics	CORE-10	3
	PHY3503	Classical Mechanics	CORE-11	3
	PHY3504	Atomic and Molecular Physics	DSE-1	3
	PHY3505	Modelling and Simulations	DSE-2	3
	PHY3506	MATLAB Programming	DSE-2	3
	PHY3507	Astronomy and Astrophysics	DSE-3	3
	PHY3508	Fundamentals of Material Science	DSE-3	3
	PHY3509	Practical Course V	PCORE-5	2
	PHY3510	Practical Course VI	PCORE-6	2
	PHY3511	Practical Course VII: MATLAB Programming	PCORE-7	2
	VDU2501			2
	VPH3501	Video Recording and Playback Systems*	DSE-2	3
	VPH3502	Video Production*	DSE-3	3
	VPH3503	Practical Course V*	PCORE-/	2
VI	DUV2601	Classical Electrodynamics	CODE 12	2
V1	PH 13001	Classical Electrodynamics	CORE-12	2
	PH13002	Thermodynamics and Statistical Machanics	CORE-13	2
	PH13003	Nuclear and Particle Drysics	DSE 4	3
	PHV3605	Flactronics II	DSE-4	3
	PHV3606	Advanced Electronics	DSE-5	3
	PHY3607	Physics of Nanomaterials	DSE-5	3
	PHV3608		DSE-6	3
	PHY3609	Practical Course VIII	PCORF-8	2
	PHY3610	Practical Course IX	PCORF_9	2
<u> </u>	PHY3611	Practical Course X: Project	PCORF_10	2
<u> </u>	11115011			
<u> </u>	VPH3601	Entrepreneurship Development*	DSE-5	3
<u> </u>	VPH3602	Radio Production*	DSE-6	3
<u> </u>	VPH3603	Practical Course VI*	PCORE-9	2
<u> </u>	VPH3604	Practical Course VII: Project*	PCORE-10	2
			TOTAL	

Note: For semester III:

- 1. Students not opting Electronics in F. Y. B. Sc. should select PHY2302.
- 2. Students opting Electronics in F. Y. B. Sc. should select PHY2303.

Note: For semester V:

- 1. Students should select any one out of these PHY3505 and PHY 3506 courses.
- 2. Students should select any one out of these PHY3507 and PHY3508 courses.
- 3. *Students opting for vocational photography at F. Y. B. Sc. and S. Y. B. Sc. should select VPH3501, VPH3502 and VPH3503.

Note: For semester VI:

- 1. Students not opting Electronics in F. Y. B. Sc. should select PHY3605.
- 2. Students opting Electronics in F. Y. B. Sc. should select PHY3606.
- 3. Students should select any one out of these PHY3607 and PHY3608 courses.
- 4. *Students opting for vocational photography at F. Y. B. Sc. and S. Y. B. Sc. should select VPH3601, VPH3602, VPH3603 and VPH3604.

No. of Credits: 5	Title and Contents	No. of
TT	Madulal duradamad and domaad Opsillations	Lectures
Unit -I	Module1 : Undamped and damped Oscillations	
	1 1 Definition of linear and angular S H M	
	1.1 Definition of finite and angular S.H.M. and its solution	
	(exponential form)	
	1.3 Composition of two perpendicular linear S H Ms for	
	frequencies 1:1 and 1:2 (analytical method)	
	1 4Lissaious's figures and its uses Applications	
	(mechanical electrical and ontical)	
	1.5 Compound Pendulum Bar Pendulum Kater's	12
	Pendulum	12
	Damped oscillation	
	1.6 Differential equation of damped harmonic oscillator	
	and its solution, discussion of different cases.	
	1.7 Logarithmic decrement	
	1.8 Energy equation of damped oscillations	
	1.9 Power dissipation	
	1.10 Quality factor	
	1.11 Application :LCR series circuit	
Unit -II	Module 2. Forced Oscillations	
	2.1 Forced oscillation with one degree of freedom	
	2.2 Differential equation of forced oscillation and its	
	solution (transient and steady state) Amplitude of	
	forced oscillation	
	2.3 Resonance and its examples: mechanical (Barton's	
	pendulum), optical (sodium vapour lamp)	12
	2.4 Velocity and Amplitude resonance	14
	2.5 Sharpness of resonance	
	2.6 Energy of forced oscillations	
	2.7 Power dissipation	
	2.8 Quality factor and Bandwidth	
	2.9 Application of forced oscillations	
	2.10 Equation of coupled oscillations	
Unit –III	Module 3. Wave Motion and Doppler effect	
	3.1 Differential equations of wave motion in continuous	
	media	
	3.2 Equations for longitudinal waves and it's solution	
	(one dimension only)	
	3.3 Equation for transverse waves and its solution (one	
	dimension only)	12
	3.4 Energy density and intensity of a wave	
	3.5 Discussion of seismic waves	
	3.6 Electromagnetic Waves.	
	3./ Explanation of Doppler effect in sound	
	5.8 Expression for apparent frequency in different cases.	
	3.9 Asymmetric nature of Doppler effect in sound	
	1.5.10 Dobbier effect in light, symmetric nature of Dobbier	

	effect in light.	
	3.11 Applications: Red shift, Violet shift, Radar	
Unit –IV	Module 4:Sound	
	4.1 Definition of sound intensity, loudness, pitch, quality and timber	
	4.2 Acoustic intensity level measurement	12
	4.3 Acoustic pressure and it's measurement	12
	4.4 Reverberation time and Reverberation of a hall	
	4.5 Sabine's formula (without derivation)	
	4.6 Stroboscope	
Reference	1. Waves and Oscillations, Stephenson	
Books:	2. The physics of waves and oscillations, N. K. Bajaj,	
	Tata McGraw- Hill, Publishing co. ltd.	
	3. Fundamentals of vibration and waves, S P Puri, Tata	
	McGraw-Hill Publishing co. ltd.	
	4. A text book of sound, Subramanyam and Brijlal, Vikas	
	Prakashan	
	5. Sound, Mee, Heinmann, Edition - London.	
	6. Waves and Oscillations, R. N. Chaudhari, New age international (P) ltd.	
	international (r) itu.	

PAPER COD	E: PHY2302 Principles and Application of Optics	
No. of Credits	: 3 No. of Lectures	: 48
	Title and Contents	No. of
		Lectures
Unit -I	Module 1: Geometrical Optics by matrix method	12
	1.1 Introduction	
	1.2 Reflection and Translation	
	1.3 Translation Matrix	
	1.4 Refraction Matrix	
	1.5 System Matrix	
	1.6 Position of image plane	
	1.7 Magnification	
	1.8 System of matrix for thick Lens	
	1.9 System of matrix for thin Lens	
	1.10 Cardinal points of an optical system	
	1.11 System matrix for two thin lenses	
	1.12 Searle's Goniometer	
Unit -II	Module 2: Interference	12
	2.1 Phase change on reflection [Stoke's treatment]	
	2.2 Interference due to thin film	
	i] Uniform thickness: Reflection and Transmission	
	ii] Wedge shaped film: Reflection and Newton's ring	
	2.3 Colors in thin film	
	2.4 Principle construction and working of Michelson	
	interferometer	
	2.5 Applications of Michelson Interferometer	
	i] Determination of thickness of transparent media	
	ii] Resolution of spectral lines	
	iii] Standardization of meters	
Unit –III	Module 3: Diffraction	12
	3.1 Definition, difference between interference and	
	diffraction, types of diffraction	
	3.2 Fresnel's diffraction:	
	i] Diffraction at straight edge and thin wire	
	ii] Diffraction at circular aperture, rectangular	
	aperture and circular disc	
	iii] Zone plate: Derivation of focal length and	
	comparison with converging lens	
	3.3 Fraunhoffer's Diffraction	
	i] Diffraction through Single slit, double slit and	
	grating	
	3.4 Rayleigh criteria for resolution	
	3.5 Resolving power of telescopes and microscopes	
	3.6 Dispersive and resolving power of grating	
Unit –IV	Module 4: Polarization	12
	4.1Polarization of transverse waves	
	4.2 Polarization by reflection	
	4.3 Biot's polariscope	
	4.4 Brewster's law and Brewster's window	

	4.5 Pile of plates, Malus law	
	4.6 Double refraction: Huygen's explanation of double	
	refraction in uniaxial crystal	
	4.7 Nicol prism	
	4.8 Nature of refraction for different position of optical axis	
	[parallel, Perpendicular, oblique to crystal surface]	
	4.9 Elliptically and circularly polarized light	
	4.10 Quarter wave plate	
	4.11 production and detection of plane, circularly and	
	elliptically polarized light	
	4.12 Optical Activity: Fresnel's experiment and	
	explanation of rotation	
	4.13 Polarimeter	
Reference	1. Optics, fourth edition, Pearson education, E. Hetch, A.	
Books:	R. Ganesan.	
	2. A Text book of Optics, N.Subhramanyam, Brijlal,	
	3. M. N. Avadhanulu, S. Chand publication.	
	4. Physical Optics by A. K. Ghatak, McMillan, New Delhi.	
	5. Fundamentals of Optics, F. A. Jenkins, H. E. White,	
	McGraw- Hill international Edition.	
	6. Principles of optics, D. S. Mathur, Gopal Press, Kanpur	

	PAPER CODE: PHY2303	
	PAPER –III: PRACTICAL COUR	SE - 111
	No. of Credits: 2	No. of Experiments: 10
	Title o	f Experiment
1	Log decrement of oscillator in air and	water
2	Study of coupled oscillations using Co	ouple Pendulum
3	ʻg' by Bar Pendulum	
4	Determination of radius of curvature of	of a lens using Newton's ring
5	Study of Double refraction using prise	n
6	Absorption coefficient of sound	
7	Determination of cardinal points using	g Searl's Goniometer
8	Measurement of lengths using diffract	ion pattern
9 & 10	Demo Experiments	

PAPER – I:	Introductory Quantum Physics and Relativity	
No. of Credit	ts: 3 No. of Lectures	: 48
	Title and Contents	No. of
TT	Module 1. Derticle Nature of Ways	Lectures
Unit -I	1 1 Plack Pody Padjation:	
	1.1 Diack Body Radiation.	
	i] Spectral energy density at various temperatures,	
	iiil Ray Leigh Jeans law	
	iv] Wein's displacements Law Plank's law	
	1.2 Photoelectric Effect:-	
	i] Experimental observation	10
	ii] Einstein's explanation photoelectric current and	12
	retarding potential (estimation of Plank's constant and	
	work function)	
	1.3 X-ray and X-ray Diffraction: - Discovery of X-ray,	
	Production and Diffraction	
	1.4 Compton Effect:- Experimental demonstration of effect	
	(Derivation of wavelength shift)	
	1.5 Pair Production Annihilation	
Unit -II	Module 2: Wave nature of particle	
	2.1 de Broglie Hypothesis: Concept of matter waves, de	
	Broglie wavelength	
	2.2 Experimental confirmation of de Broglie Hypothesis	12
	i) Davisson Germer experiment	
	1) GP Thompson Experiment	
	2.5 Thesenberg uncertainty principle 2.4 Electron Microscope Principle and construction	
Unit _III	Module3: Special theory of relativity	
omt m	3.1Historical background :Concept of absoluteness of space.	
	time simultaneity and absolute motion. Michelson	
	Morley experiment, Lorentz-Fitzgerald Transformation	
	3.2 Postulates of special theory of relativity	
	3.3 Lorentz transformation: Derivation	12
	3.3 Time dilation, length contraction, simultaneity	
	principle	
	3.5 Variation of mass with velocity and mass energy	
	equivalence	
	3.6 Twin paradox	
Unit –IV	Module 4: Important Discoveries of Constituents of Atom	
	and Nucleus	
	4.1 DISCOVERY OI il electron iil proton iiil neutron iul coutring	12
	1] electron, 11] proton, 11] neutron, 1V] neutrino,	
	v] position, vij mesons 4.2 Elementary particles: classification	
Dafaranca	4.2 Elementary particles: classification	
Rooks.	1. Atomic Physics, J.B. Rajam, S. Chand Publication	
DAAV21	2. Concepts of Modern Physics, Aurther Beiser, Tata	
	McGraw- Hill Education	
	3. Introduction to Special Relativity, Robert Resnick,	
	John Wiley and Sons	

PAPER CODE: PHY2402 PAPER –II: Measurement Techniques in Physics

No. of Credits	No. of Lectures: 36		
	Title and Contents	No. of	
		Lectures	
Unit -I	 Module 1 : Mechanics 1.1 Measurement of mass: 1.2 Poison's ratio of rubber 1.3 Measurement of Young's modulus and Modulus of rigidity of wire by Searl's method 1.4 Measurement of surface tension of liquid by i)Wilhelmy's method ii)Fergusson Method iii)Quinke's Method iv)Soap solution method 1.5 Determination of viscosity of liquid by coaxial cylinder method 1.6 Determination of viscosity of gas by flow through a capillary tube 	12	
	1.7 Error analysis: definition of error and accuracy in measurement, order of accuracy, types and causes of errors, estimation of errors, Average error, rms error, probable error, practical determination of error		
Unit -II	Module 2: Heat and Thermodynamics 2.1 Determination of specific heat of solid and liquid by cooling method 2.2 Determination of latent heat of fusion of ice, latent heat of vaporization 2.3 Clement and Desorme's experiment for determination of C_p/C_v for air 2.4 Duma's method for determination of vapour density 2.5 Determination of thermal conductivity of rubber and glass tube 2.6 Forbe's method for determining thermal conductivity of a metal bar 2.7 Determination of Joule's equivalent of heat by Callendar and Barne's method 2.8 Determination of Stefan's constant using black body	12	
Unit -III	 Module 3: Optics 3.1 Determination of refractive index of a liquid by total internal reflection within a glass prism 3.2 Determination of wavelength of light by Lloyd's single mirror and Fresnel's double mirror 3.3 Determination of Young's Modulus and Poisson's ratio of glass bar by Newton's ring 3.4 Refractive index of air by Rayleigh's refractometer 3.5 Determination of e/m for electron by Normal Zeeman effect using Fabry parrot interferometer 3.6 Determination of resolving power of telescope 3.7 Michelson's method for measuring stellar diameters 3.8 Use of Quarter wave plate 	12	

	3.9 study of rotation of plane of polarization by Lorentz	
	Saccharimeter	
	3.10 Methods for measurement of velocity of light	
	i) Astronomical Method	
	ii) Kerr Cell Method	
	iii) Rotating mirror method	
Unit –IV	Module 4: Electricity and Magnetism	
	4.1 Determination of B_H , B_V and angle of dip by Earth	
	coil	
	4.2 Determination of permeability by using iron wire	
	specimen and iron sample by using magnetometer and	
	Ballistic galvanometer	
	4.3 Determination of susceptibility of a solution	
	4.4 Measurement of electric charge by moving coil	
	Ballistic galvanometer	
	4.5 Determination of value of high and low resistance	12
	using Kelvin 's Bridge and by leakage using Ballistic	
	galvanometer method	
	4.6 Study of variation of resistance with temperature	
	using bridge method	
	4.7 Comparison of capacities of condensers	
	4.8 Measurement of self inductance using Anderson	
	bridge	
	4.9 Measurement of sensitivity of AC bridges using	
	moving coil vibration Galvanometer	
Reference	1. Advanced Practical Physics for students, B.L.	
Books:	Worsnop and H.T. Flint, Methuen	

	PAPER CODE: PHY2403 PAPER -III: PRACTICAL COURSE -IV		
	No. of Credits: 2 No. of Experiments: 10		
	Title of Experiment		
1	Use of Computer		
2	Transistor characteristics		
3	Determination of B_H , B_V and angle of dip by Earth coil		
4	Measurement of electric charge by moving coil Ballistic galvanometer		
5	Study of half wave and full wave rectifiers		
6	study of rotation of plane of polarization by Lorentz Saccharimeter		
7	Measurement of Young's modulus and Modulus of rigidity of wire by		
	Searl's method		
8	Quarter wave plate		
9 & 10	Study visit		