

Deccan Education Society's FERGUSSON COLLEGE, PUNE

Scheme of Course Structure (Faculty of Science) Department of Mathematics

F.Y. B.Sc. (Computer Science)

Particulars	Paper Code	Title of Paper	No of Credits
Semester - I	MTC1101	Discrete Mathematics	2
	MTC1102	Algebra	2
	MTC1103	Mathematics Practical - I	2
Semester - II	MTC1201	Graph Theory	2
	MTC1202	Calculus	2
	MTC1203	Mathematics Practical - II	2

Learning Objectives:

- To develop problem solving abilities using a computer.
- To build the necessary skill set and analytical abilities for developing computer based solutions using mathematical concepts.
- To imbibe quality software development practices using Logical operations. To create awareness about process and product standards.
- To train students in professional skills related to Software Industry.

PAPER CODE: MTC1101 PAPER - I: DISCRETE MATHEMATICS

[Credit -2: No. of Lectures 36]			
	Title and Contents No. of		
		Lectures	
Bridge course	Revision: Propositional Logic, Propositional Equivalences.	3	
	Predicates and Quantifiers: Predicate, <i>n</i> -Place		
	Predicate or, <i>n</i> -ary Predicate, Quantification and		
	Quantifiers, Universal Quantifier, Existential		
	Quantifier, Quantifiers with restricted domains,		
	Logical Equivalences involving Quantifiers.		
	Rules of Inference: Argument in propositional		
	Logic, Validity Argument (Direct and Indirect		
	methods) Rules of Inference for Propositional		
	Logic, Building Arguments.		
Unit - I	Lattices and Boolean Algebra	10	
	1.1 Poset, Hasse diagram.		
	1.2 Lattices, Complemented lattice, Bounded		
	lattice and Distributive lattice.		
	1.3 Boolean Functions: Introduction,		
	Boolean variable, Boolean Function of		
	degree n, Boolean identities,		
	Definition of Boolean Algebra.		
	1.4 Representation of Boolean Functions.		
	Minterm Maxterm Disjunctive normal		
	form, Conjunctive normal Form.		
	1.5 Applications to Computer Science /		
	Practical Application.		
Unit - II	Recurrence Relations	9	
	2.1 Recurrence Introduction, Formation		
	2.2 Linear Recurrence Relations with constant		
	coefficients.		
	2.3 Homogeneous Solutions.		
	2.4 Particular Solutions.		
	2.5 Total Solutions.(Introduction of Solving		
	Recurrence Relation through generating		
	functions)		

	2.6	Applications to Computer Science /	
		Practical Application.	
Unit - III	Matı	rices and System of Linear Equations	14
	3.1	Revision: Elementary operations on	
		matrices.	
	3.2	Echelon form of matrix	
	3.3	System of linear equations:	
		Gauss Elimination Method,	
		Gauss Jordan Elimination Method,	
		L.U. Decomposition Method	
	3.4	Rank of matrix, Row rank, Column rank	
	3.5	Applications to Computer Science /	
		Practical Application	

- 1) Kenneth Rosen, Discrete Mathematics and It's Applications (Tata McGraw Hill)
- 2) C. L. Liu ,Elements of Discrete Mathematics, (Tata McGraw Hill)
- 3) John Clark and Derek Holton, A First Look at Graph Theory (Allied Publishers)
- 4) Narsingh Deo, Graph Theory with Applications to Computer Science and Engineering, (Prentice)

PAPER CODE: MTC1102 PAPER - II: ALGEBRA

Credit - 2: No. of Lectures 36]

	Title and Contents	No. of
		Lectures
Unit - I	Relations and Functions	11
	1.1 Ordered pairs, Cartesian product of Sets.	
	1.2 Relations, types of relations, equivalence	
	relations. Partial orderings.	
	1.3 Equivalence Class, properties and partition of a set.	
	1.4 Transitive closure and Warshall's Algorithm.	
	1.5 Diagraphs of relations, matrix representation and composition of relations.	
	1.6 Definition of function as relation, types of	
	functions (one-one, onto and bijective)	
	1.7 Pigeonhole principle.	
	1.8 Applications to Computer Science / Practical Application	
Unit - II	Divisibility in Integers	11
	2.1 Division Algorithm (without proof)	
	2.2 Divisibility and its properties, prime numbers.	
	2.3 Definition G.C.D and L.C.M.,	
	Expressing G.C.D. of two integers as	
	a linear combination of the two	
	integers.	
	2.4 Euclidean Algorithm (Without proof).	
	2.5 Relatively prime integers, Euclid Lemma and its generalization.	
	2.6 Congruence relations and its properties,	
	Residue Classes: Definition, Examples,	
	addition and multiplication modulo n and	
	composition tables	
	-	
	proof). Examples 2.8 Chinese Remainder Theorem and its	
	Applications.	
	2.9 Applications to Computer Science /	
	Practical Application	

Unit - III	Binary Operations and Graphs	14
	3.1 Definitions of binary operations and	
	properties of binary operations and	
	examples.	
	3.2 Definition of groups ,examples	
	Subgroups, finite and infinite group.	
	3.3 Permutation groups	
	3.4 Cyclic groups	
	3.5 Definition and Examples of Normal	
	Subgroups	
	3.6 Definition and Examples of Quotient	
	Groups.	
	3.7 Applications to Computer Science /	
	Practical Application	

- 1) Discrete Mathematics Structure Bernard Kolman, Robert Busby, Sharon Cutler Ross, Nadeem-ur-Rehman, Pearson Education, 5th Edition
- 2) Elements of Discrete Mathematics C.L.Liu (Tata McGraw Hill)
- 3) Calculus and Analytical Geometry Thomas Finny
- 4) J.B. Fraleigh, A. First Course in Abstract Algebra, Third Ed., Narosa, New Delhi, 1990
- 5) H. Anton and C. Rorres, Elementary Linear Algebra with Applications, Seventh Ed., Wiley, (1994).
- 6) Differential Equations with Applications and Historical notes- George Simmons

	PAPER CODE: MTC1103		
	PAPER -III: MATHEMATICS PRACTICAL - I		
	[Credit -2: No. of Practicals 10]		
	Title of Experiment / Practical		
1	Introduction to Mathematical Programming Part-I		
2	Introduction to Mathematical Programming Part-II		
3	Lattices and Boolean Algebra.		
4	Recurrence Relations.		
5	Matrices and System of Linear Equations.		
6	Relations and functions.		
7	Binary Operations and Groups.		
8	Divisibility in Integers.		
9	Student activity - I		
10	Student activity - II		

Deccan Education Society's FERGUSSON COLLEGE, PUNE (AUTONOMOUS)

SYLLABUS UNDER AUTONOMY

FIRST YEAR B.Sc. (Computer Science) SEMESTER – II

SYLLABUS FOR F.Y. B.Sc. (Computer Science) MATHEMATICS

Academic Year 2016-2017

PAPER CODE: MTC1201 PAPER –I: GRAPH THEORY [Credit -2: No. of Lectures 36]

	Title and Contents	No. of Lectures
Unit - I	Graphs	6
	1.1 Definition, Elementary terminologies and	Ü
	results, Graphs as Models.	
	1.2 Special types of graphs.	
	1.3 Isomorphism.	
	1.4 Adjacency and Incidence Matrix of a Graph.	
	1.5 Applications to Computer Science / Practical	ા
	Application	
Unit - II	Operations on Graphs	4
	2.1 Subgraphs, induced sub-graphs, Verte deletion, Edge deletion.	X
	2.2 Complement of a graph and self complementary graphs.	-
	2.3 Union, Intersection and Product of graphs.	
	2.4 Fusion of vertices.	
	2.5 Applications to Computer Science /	
	Practical Application	
Unit - III	Connected Graphs	9
	3.1 Walk, Trail, Path, Cycle: Definitions an elementary properties.	d
	3.2 Connected Graphs: definition and properties.	
	3.3 Distance between two vertices, eccentricity centre, radius and diameter of a graph.	7,
	3.4 Isthmus, Cut vertex: Definition an properties.	d
	3.5 Cutset, edge-connectivity, vertex connectivity.	
	3.6 Weighted Graph and Dijkstra's Algorithm.	
	3.7 Applications to Computer Science /	
	Practical Application.	
Unit - IV	Eulerian and Hamiltonian Graphs	5
	4.1 Seven Bridge Problem, Eulerian Graph,	
	Definition and Examples.	
	4.2 Necessary and Sufficient condition.	
	4.3 Fleury's Algorithm.	
	4.4 Hamiltonian Graphs: Definition and	
	Examples, Necessary Condition.	
	4.5 Introduction of Chinese Postman Probler	n
	and Travelling Salesman Problem.	
	4.6 Applications to Computer Science /	

	Practical Application		
Unit - V	Trees	6	
	5.1 Definition, Properties of trees.		
	5.2 Center of a tree.		
	5.3 Binary Tree: Definition and properties.		
	5.4 Tree Traversal: Ordered rooted Tree,		
	Preorder traversal, inorder traversal and		
	postorder traversal, Prefix Notation.		
	5.5 Spanning Tree: Definition, Properties, Shortest Spanning Tree, Kruskal's Algorithm.		
	5.6 Applications to Computer Science /		
	Practical Application		
Unit - VI	Directed Graphs 6		
	6.1 Definition, Examples Elementary		
	Terminologies and properties.		
	6.2 Special Types of Digraphs.		
	6.3 Connectedness of digraphs.		
	6.4 Network and Flows: definition and examples.		
	6.5 Activity on vertices.		
	6.6 Topological Sorting		
	6.7 Applications to Computer Science /		
	Practical Application		

- 1. Kenneth Rosen, Discrete Mathematics and It's Applications (Tata McGraw Hill)
- 2. C. L. Liu ,Elements of Discrete Mathematics, (Tata McGraw Hill)
- 3 John Clark and Derek Holton, A First Look at Graph Theory (Allied Publishers)
- 4. Narsingh Deo, Graph Theory with Applications to Computer Science and Engineering, (Prentice)
- 5. D Knuth, Fundamentals of Algorithm Vol I.

PAPER CODE: MTC1202 PAPER - II: CALCULUS

[Credit -2: No. of Lectures 36]

[Credit -2: N	0. 01 Le	1	N 7 0
		Title and Contents	No. of Lectures
Unit - I	Cont	inuity and Differentiability	14
	1.1	Continuity and Properties of continuous	
		functions defined on [a, b] (Without proof) and	
		examples.	
	1.2	Differentiability.	
	1.3	Theorem – Differentiability implies	
		continuity but not conversely. Left hand derivative	
	and R	Right hand derivative	
	1.4	Intermediate value theorem (without proof).	
	1.5	Rolle's theorem (with proof and geometric	
		interpretation).	
	1.6	Lagrange's Mean Value Theorem (with proof	
		and geometric interpretation)	
	1.7	Cauchy's Mean Value Theorem (with proof),	
		Verification and applications.	
	1.8	L' Hospital's Rule (without proof)	
	1.9	Growth of functions	
	1.10	Big O, Big Ω , little O, little Ω definition and	
	1.11	examples Applications to Computer Science /	
	1.11	Practical Application	
Unit - II	Succe	Successive Differentiation	
	2.1	The n th derivatives of standard functions.	5
	2.2	Leibnitz's Theorem (with proof).	
	2.3	Applications to Computer Science /	
		Practical Application	
Unit - III	-	or's and Maclaurin's Theorems	5
	3.1	Taylor's and Maclaurin's Theorems	
		with Lagrange's and Cauchy's form of	
		remainders (without proof).	
	3.2	Taylor's and Maclaurin's Series.	
	3.3	Applications to Computer Science / Practical Application	
Unit - IV	Ordi	nary differential equations	12
	4.1	Basic Concepts: Introduction, Definition,	14
		Direction Fields	
	4.2	First Order Differential Equations: Linear	

Differential	Equations,	Separable	Differential	
Equations, E	xact Differen	tial Equation	s,	
Bernoulli Differential Equations,				
Substitutions, Euler's method, Intervals of				
Validity.				

- 4.3 Second Order Differential Equations: Basic concepts, Real, distinct roots, complex roots, repeated roots, Reduction of order, Non-homogenous Differential Equations, Undetermined coefficients and Variation of parameters.
- 4.4 Applications to Computer Science / Practical Application

- 1) Discrete Mathematics Structure Bernard Kolman, Robert Busby, Sharon Cutler Ross, Nadeem-ur-Rehman, Pearson Education, 5th Edition
- 2) Elements of Discrete Mathematics C.L.Liu (Tata McGraw Hill)
- 3) Calculus and Analytical Geometry Thomas Finny
- 4) J.B. Fraleigh, A. First Course in Abstract Algebra, Third Ed., Narosa, New Delhi, 1990
- 5) H. Anton and C. Rorres, Elementary Linear Algebra with Applications, Seventh Ed., Wiley, (1994).
- 6) Differential Equations with Applications and Historical notes- George Simmons.
- 7) Elementary Number Theory Burton.

	PAPER CODE: MTC1203		
	PAPER – III: MATHEMATICS PRACTICAL - II		
	[Credit -2: No. of Practicals 10]		
	Title of Experiment / Practical		
1	Graphs, Operations on Graphs and Connected Graphs		
2	Eulerian and Hamiltonian Graphs.		
3	Trees		
4	Directed Graphs		
5	Continuity and Differentiability.		
6	Mean value theorems and L'Hospital rule.		
7	Successive Differentiation and Taylor's and Maclaurin's Theorems.		
8	Ordinary Differential Equations		
9	Student activity - I		
10	Student activity - II		